
A Chomsky Grammar
solving the Partition Problem

Hauke Rehr

June 10, 2024

Contents
1 Partition 3

1.1 Problem Statement . 3
1.2 Mathematical Model . 3
1.3 Insights . 3

2 Chomsky Grammar 4
2.1 Motivation . 4
2.2 Mathematical Model . 4
2.3 Iterative Substitution . 4
2.4 Implementation . 5

3 A Grammar for the Partition Problem 7
3.1 The Grammar and Numbers of Rules 7
3.2 The Empty Language; Completeness and Soundness 8
3.3 The Grammar Explained . 10

4 Case Studies 11
4.1 Comparative Study . 11
4.2 Impossible Partition . 12
4.3 Single Solution Problems . 12
4.4 Multiple Solution Problems . 12
4.5 Conclusion . 12

A Code Listing 13

B Further Reading 14

2

Notation
• For any n ∈ N0, let In := [1, n] ∩ N.

• For any universe U and subset S drawn from U , let S := U \ S denote the
relative complement of S with respect to U .

• If a set is quantifiedover andno representativename is given, itwill implicitly
be the miniscule variant of the set name, e. g. ∀

S
s ∈ U .

• If the set quantified over is some power of a set, positive natural indices are
provided to constituent tuple elements in turn, e. g. ∀

S2
s ∈6=⇒ |{s1, s2}| = 2.

• The above quantification rules apply to indices bound by index sets as well.

1 Partition
1.1 Problem Statement
For some given setO of objects sharing a cumulative propertyπwith accumulation
operator

∑
, the partition problem asks if there is a subsetN ⊂ O the accumulated

property value of which equals that of its relative complement, and if so to provide
an exemplary pair (N,N) satisfying that very condition:∑

N

π(n) =
∑
N

π(n) .

1.2 Mathematical Model
Givenn ∈ N, some setV , ann-tuple v = (vi)In ∈ V n, and π : V → R+, let p(v,N)
iff N ⊂ In,

∑
N

π(vn) =
∑
N

π(vn).

Tell if ∃
J∈2In

p(v, J) holds. If so, give an example (J, J) satisfying p(v, J).

In the discrete partition case, π is restricted to the codomain N.

1.3 Insights
Obviously, in the situationof themodel, p(v, J)holds true iff sodoes p(v, J). Since
we are interested in elements of 2In satisfyingp(v, •) (or a lack thereof), a successful
answer may be given by n bits.
This finding shall be made use of later.

3

2 Chomsky Grammar
2.1 Motivation
Chomsky grammars are a Turing complete computational model used to design
languages for a wide range of different purposes. While programming languages
usually are expressed by an EBNF grammar applicable to the rather narrow subset
of context free languages aka type 2 grammars according to the Chomsky hierarchy,
applications range from abstract definitions in complexity theory tomore concrete
descriptions of secondary RNA structures [1] and even dynamic programming [2],
just to name a few of those in active use at FSU Jena, and to the definition of
functions by way of a language dependent on a parameterized rule set. The latter
shall be employed here in an effort to provide a solution to the partition problem.

2.2 Mathematical Model
A(type 0)Chomsky grammarG is a quadruple of objects defining the substance for
an inductive substitution scheme. This substitutionprocessunfolding the induced
language L(G) expressed by G will be implemented iteratively in code samples
written in the J language thoughout this chapter. The grammar data itself will be
provided to the program by means of .json files as has been done before (the objects
follow the ensuing definitions closely).

NB. === read the grammar file ===
load'convert/json'
jsn =: dec_json freads grammar

15 'rules start_symbol term_symbols var_symbols' =: ({:/:{.) jsn

Let ε denote the empty word (the sequence of zero symbols). The Kleene hull of
a language or alphabetA is the union of all itsn-fold productsA∗ :=

⋃
N0

×
In

Awhere
product refers to concatenation. Note that ε ∈ A∗.
In the case of an alphabet, any subset of A∗ is called a language over A, and all of
its elements words of said language.
Given an alphabet T of terminal symbols (“letters” of the language in question),
a nonempty set N of symbols distinct from T called nonterminal symbols, a start
symbolS drawn fromN , the shorthandS := (T ∪N)∗, andany rule setR ⊂ SS\T ∗ ,
G = (N, T , R, S) is called a grammar.

2.3 Iterative Substitution
The functionR is actuallymeant toworkon infix sets. Let∆be its current domain.
As a first step, an auxiliary definition ∀

S
ρ(s) :=

⋃
S2

⋃
∆

{s1 ◦R(δ)◦ s2 | s = s1 ◦ δ ◦ s2}

where ◦denotes concatenation treats infixes. Again, note that any of s1 and s2 may
be the empty word. As a second step, the domain of R gets broadened, including
sets W ∈ 2S of words: R(W) :=

⋃
W

ρ(w).

The language generated by G can now be defined by L(G) :=
⋃
N0

Rn({(S)}) ∩ T ∗.

4

2.4 Implementation
This code section is best read bottom to top, and will be explained in that order.

NB. === get all substitutions ===
where =: >@] (I.@E.~ +"0 1 0:, #@]) 0 {:: [
presuf =: ((<@{.)`(<@}.))"0 _

20 sub =: 1 0 2 <@;@:{"1 {:@[,. where presuf"1 >@]
step =: (>rules) <@:sub"1 0/]

Reading the functions, wee see that

step receives a set of not yet expanded words W and applies the sub function to
all elements of the productR×W whereR is given as a list of pairs of words.

sub in turn looks for occurrences of the left hand side of any entry in R using
where, splits the word accordingly, adds the right hand side of the current
rule in front, rearranges these three parts using the permutation 1 0 2 and
joins them into a single word.

where receives the same arguments, finds the indices of occurrences and adds both
0 and the infix length to them

presuf extracts a prefix and a suffix of the word accordingly.

So sub and step actually implement the functions ρ and R (on sets) given above.
The definition of L(G) above can be read with different precedence rules for the
union and intersection. The value is the same either way, but the implementation
benefits from separating results (words w ∈ T ∗) outside of ρ’s domain from words
that may still get expanded.

Reading the next three functions, wee see that

terminal tests if a word is a result (consists entirely of terminal symbols)

filterminal selects just these words

union implements set union by joining the set difference

NB. === advance to next iteration ===
terminal =: (;term_symbols) *./@:e.~ >

25 filterminal =: #~ terminal"0
union =:],-.

5

The function explore is written in an imperative style. It returns immediately
in case the iteration count is exhausted yet. Otherwise a new list of results is
obtained and joins the list of all results. Any not yet explored words neither seen
already (done) nor determined to be results make for a new list of words to explore.
This list gets added to done already. Should it be empty, the entire set

⋃
N0

Rn({(S)})
has been explored, and the iteration converges.
A not exhausted list however gets processed by step, the result of which is made
unique. So explore updates both res and done according to the words given, and
returns the next generation of words.

explore =: 3 : 0
if. iter = yet =: >: yet do. y return. end.

30 res =: res union newres =. filterminal y
done =: done, newdone =. y -. newres, done
if. 0 = #newdone do.
echo 'converged after ', ' steps',~ ": <: yet
y return.

35 end.
~. ; step newdone

)

The union in the definition of L(G) above ranges over all ofN0 but this algorithm
would not converge for many input grammars. That’s why not only the input file
name but also the number of rule application steps need to be provided on the
command line, either a natural number or positive infinity for convergence:

NB. === show usage if args are bad ===
USAGE =: 0 : 0

5 script usage:
./grammar.ijs -js "grammar=.\'<filename>\' iter=.<number>"
)
hasdef =: 13 : '0 <: 4!:0 y'
0"_@".&>"(0) 3 }. ARGV

10 {{ if. -.*./hasdef'grammar';'iter' do. exit 1[echo USAGE end. }}0

Before the process gets started, the accumulation lists res and done need to be
initialized as empty. Now the definition can be written just as above: apply the step
itermany times to the list consisting of only the start symbol, filter for results one
last time, and join this to all previous results.

NB. === run iteration, show result ===
40 res =: done =: a: $~ yet =: 0

result =: res union filterminal explore^:_ ,<start_symbol
exit 0 [echo 'results', ": result

6

3 A Grammar for the Partition Problem
3.1 The Grammar and Numbers of Rules
After refinements reducing thenumber of rules down fromquadratic to linear, and
further reducing the linear coefficient down to 2, this is the entire rule set:
from → to # explanation

S → LM(Ai)R 1 (Ai) are input symbols representing the values (vi)
M → pMn 1 M produces k many ps on its lhs and ns on its rhs
M → ε 1 M disappears, k could be 1

2

∑
vi if natural

pn → np 1 ns let ps go past
nviAi → ν n an input symbol Ai cancels as „negative“ vi many ns
pviAi → π n an input symbol Ai cancels as „positive“ vi many ps

pν → νp 1 negative cancellations go past ps
pπ→ πp 1 positive cancellations go past ps
nν → νn 1 negative cancellations go past ns
nπ→ πn 1 positive cancellations go past ns
Lν → νL 1 negative cancellations extend the result on the left
Lπ→ πL 1 positive cancellations extend the result on the left
LR → ε 1 once no n, p, Ai, ν, π or M is left between L and R, a

word of the language remains to their left
→ 11 + 2n

This now encouraged wondering whether using more rules in order to get results
in less steps was worthwhile, guiding the development of the following set of rules:
from → to # explanation

S → LM(Ai)R 1 (Ai) are input symbols representing the values (vi)
M → pMn 1 M produces k many ps on its lhs and ns on its rhs
M → ε 1 M disappears, k could be 1

2

∑
vi if natural

pvin → npvi n ns let blocks of ps go past
nviAi → ν n an input symbol Ai cancels as „negative“ vi many ns
pviAi → π n an input symbol Ai cancels as „positive“ vi many ps
pviν → νpvi n negative cancellations go past p blocks
pviπ→ πpvi n positive cancellations go past p blocks
nviν → νnvi n negative cancellations go past n blocks
nviπ→ πnvi n positive cancellations go past n blocks

Lν → νL 1 negative cancellations extend the result on the left
Lπ→ πL 1 positive cancellations extend the result on the left
LR → ε 1 once no n, p, Ai, ν, π or M is left between L and R, a

word of the language remains to their left
11→−5 6
2n→+5n 7n = 6 + 7n

The empirical evidence using the J implementation suggests the number of rules
has much worse of an impact on the running time than does the number of steps.
Even though it took the second rule set only 3/4 as many steps, there was a tenfold
increase of time taken compared to the first one.

7

3.2 The Empty Language; Completeness and Soundness
The explanation column tries showing how we may get from the start symbol S to
a solution in case there is one. Exactly this is the reason for the order the rules are
given in: One can trace a sequence of steps roughly from top to bottom through
the rules that would make for a “solution production path” given a solution exists.

And that’s exactly the caveat. When concened with correctness proofs, not only
does the production of solutions given solubility need to be shown (completeness).
The soundness requirement can be phrased in different ways, though.

• If a result is produced, the problem must have had a solution.

• Given non-solubility, no result may be produced.

Unsurprisingly, these aremutual contrapositives, so froma logical perspective there
is not much merit in investigating both of them. But there is another aspect when
it comes to crafting efficient and correct grammars. The first point of view follows
the paradigm of bug fixing: “urgh, another result that should not have occurred.”
So the grammar needs to be changed to be tracable from the result back to the inputs
for the first statement to stand any chance of proving.

Committing to the second one, however, guides the design to codevelop both the
successful and unsuccessful paths in parallel, from the inputs to the results or lack
thereof, keeping the reasoning unidirectional.

Fixing mistakes of wrongly produced results in the first one is a chore; with the
second one, it boils down to refactoring and adjusting just like with any other
improvement. There is one path to follow, one train of thought. And in every
single step, a bidirectionality, conditions both necessary and sufficient, are visible.

And that’s how the following set of rules came to be in an attempt to keep the
number of applicable rules low.

The number of rules got vastly reduced, and the result is arguably as good as it gets.
There is another concern, though. In case there is no result (the language is empty),
both sets of rules considered this far will keep producing new words indefinitely.
Hence, for the algorithm to converge in a finite amount of time in this situation,
the simple “solution production path” needs to be forced on the rule progression.

In the following, ow shall indicate that symbols can pass each other only one way.
In honor of the effectiveness of this strategy as demonstrated below, this will be
called the one way principle.

The first rule is given separately here for its length would have messed up the table
layout beyond repair.
NB: The order of the Ai in the three sequences does not need to agree.

Only the order in the third one actually matters.

8

S→ LHQ(Ai)Z(Ai)M(Ai)R 1 (Ai) are input symbols representing the values (vi)
from → to # explanation
QAi → PviQ n turning the left copy of inputs into Ps ow
QZ → O 1 transition to the second step

OAi → NviO n turning the middle copy of inputs into Ns ow
HPP → pH 1 positive half ow

HNN → nH 1 negative half ow
HOM → ε 1 transition to the third step

pn → np 1 ns let ps go past ow
nviAi → ν n an input symbol Ai cancels as „negative“ vi many ns
pviAi → π n an input symbol Ai cancels as „positive“ vi many ps

pν → νp 1 negative cancellations go past ps ow
pπ→ πp 1 positive cancellations go past ps ow
nν → νn 1 negative cancellations go past ns ow
nπ→ πn 1 positive cancellations go past ns ow
Lν → νL 1 negative cancellations extend the result on the left ow
Lπ→ πL 1 positive cancellations extend the result on the left ow
LR → ε 1 a word from the language remains

→ 13 + 4n

How about trading steps for rules this time?
S→ LHQ(Ai)Z(Ai)M(Ai)R 1 (Ai) are input symbols representing the values (vi)
from→to # explanation
QAi→PviQ n turning the left copy of inputs into Ps
QZ→O 1 transition to the second step

OAi→NviO n turning the middle copy of inputs into Ns
HPP→pH 1 positive half

HNN→nH 1 negative half
HOM→ε 1 transition to the third step
pnin→npni n ns let ps go past

nviAi→ν n an input symbol Ai cancels as „negative“ vi many ns
pviAi→π n an input symbol Ai cancels as „positive“ vi many ps
pviν→νpvi n negative cancellations go past blocks of ps
pviπ→πpvi n positive cancellations go past blocks of ps
nviν→νnvi n negative cancellations go past blocks of ns
nviπ→πnvi n positive cancellations go past blocks of ns

Lν→νL 1 negative cancellations extend the result on the left
Lπ→πL 1 positive cancellations extend the result on the left
LR→ε 1 a word from the language remains

→ = 10 + 9n
The improvement in the number of steps was comparable to the cases above (4/5).
This supposed optimization, however, was again found to be outweighed by the
cost incurred by newly introduced rules. Since this came as a surprise, the term
rule-step primate was coined for this effect.
The one way principle proved extremely efficient, though. This approach was an
order of magnitude faster in the simple test case.

9

3.3 The Grammar Explained
Themain insight to be hadwas that the result is essentially a run of bits each telling
which set of the partition the corresponding input symbol has its value belong to.
Once that was figured out, a set comprising a mere 11+2n rules was readily found.
The very first rules in a rule set are usually expansions of the start symbol, S here.
There is only one such rule in this case which thus produces all the input symbols.
Here, a left and right delimiter are given, and another symbol M present in the
next pair of production rules only. For the word to not contain the nonterminal
M, these stepsmust be applied, and they are crafted topermutewith applications of
all other rules so we may as well bring them to the front, immediately following the
expansion of S. This results in an intermediate word LpknkR. As the explanation
says, k can be half the sum of all vi if natural. Another rule allows for ps to travel to
the right so any string of k ps and k ns can emerge. At some point, L and R must be
adjacent so all ps and ns must be gone as they do not travel past these delimiters.
from → to # explanation

S → LM(Ai)R 1 (Ai) are input symbols representing the values (vi)
M → pMn 1 M produces k many ps on its lhs and ns on its rhs
M → ε 1 M disappears, k could be 1

2

∑
vi if natural

pn → np 1 ns let ps go past
LR → ε 1 once no n, p, Ai, ν, π or M is left between L and R, a word

of the language remains to their left

The only way for ns and ps, and for the input symbols to disappear is by producing
ν and π symbols. For all those symbols to be gone, as many ns must have been
cancelled as ps, so the sums of the respective input values agree.
The symbols ν and π, mnemonic for negative and positive, need to travel past ps
and ns in order for all ps, ns and input symbols to vanish. But they never pass one
another so the order of the input symbols is preserved in these new symbols.

nviAi → ν n an input symbolAi cancels as „negative“ vi manyns
pviAi → π n an input symbol Ai cancels as „positive“ vi many ps

pν → νp 1 negative cancellations go past ps
pπ→ πp 1 positive cancellations go past ps
nν → νn 1 negative cancellations go past ns
nπ→ πn 1 positive cancellations go past ns

Finally, they will pass the L border, accumulating as a result word, still preserving
the order of inputs.

Lν → νL 1 negative cancellations extend the result on the left
Lπ→ πL 1 positive cancellations extend the result on the left

Only if the value sum of the input symbols translated to ν matches that of those
translated to π is it that a word of terminals will evolve. If there is any way to
partition accordingly, though, there will always be a sequence of rule applications
leading to a resultwordencoding the input’s correspondence topartitionelements.

10

4 Case Studies
4.1 Comparative Study
As an alternative to the own code (cf. 2.4), an existing simulator was employed.
That one, though, works only probabilistically, using the Monte Carlo method.
The last run (the 10 + 9n rules case) was cancelled after roughly three minutes.
The trace is removed from this log, as are reported real and sys times.
As can be seen from the rule log, the instance put to the test here is (1, 2, 4, 5) albeit
with reversed order of input symbols.

$> time python3 chomsky.py hr/partition.json -w1 -s0
Words generated(1): 'νππν'[34 steps]
Applied rules(15): ('Lπ', 'πL'), ('nnnnnA4', 'ν'), ('nν', 'νn'),

('nπ', 'πn'), ('nA1', 'ν'), ('ppppA3', 'π'), ('S',
'LMA4A3A2A1R'), ('M', ''), ('M', 'pMn'), ('Lν', 'νL'), ('pν',
'νp'), ('pπ', 'πp'), ('pn', 'np'), ('ppA2', 'π'), ('LR', '')

↪→

↪→

↪→

user 0m0.036s
$> time python3 chomsky.py hr/partition_shortcuts.json -w1 -s0
Words generated(1): 'νππν'[31 steps]
Applied rules(17): ('ppn', 'npp'), ('LR', ''), ('Lπ', 'πL'),

('pν', 'νp'), ('ppA2', 'π'), ('M', 'pMn'), ('pπ', 'πp'),
('nν', 'νn'), ('nπ', 'πn'), ('M', ''), ('Lν', 'νL'), ('ppν',
'νpp'), ('nA1', 'ν'), ('S', 'LMA4A3A2A1R'), ('nnnnnA4', 'ν'),
('ppppA3', 'π'), ('pn', 'np')

↪→

↪→

↪→

↪→

user 0m0.046s
$> time python3 chomsky.py hr/partition_converge.json -w1 -s0
Words generated(1): 'νππν'[49 steps]
Applied rules(25): ('OA1', 'NO'), ('nπ', 'πn'), ('pν', 'νp'),

('QA2', 'PPQ'), ('OA3', 'NNNNO'), ('nA1', 'ν'), ('Lπ', 'πL'),
('HPP', 'pH'), ('QA1', 'PQ'), ('ppppA3', 'π'), ('HOM', ''),
('nnnnnA4', 'ν'), ('S', 'LHQA4A3A2A1ZA4A3A2A1MA4A3A2A1R'),
('pπ', 'πp'), ('nν', 'νn'), ('pn', 'np'), ('OA2', 'NNO'),
('HNN', 'nH'), ('LR', ''), ('OA4', 'NNNNNO'), ('QA3',
'PPPPQ'), ('QZ', 'O'), ('Lν', 'νL'), ('QA4', 'PPPPPQ'),
('ppA2', 'π')

↪→

↪→

↪→

↪→

↪→

↪→

↪→

user 0m0.036s
$> time python3 chomsky.py hr/partition_converge_shortcuts.json

-w1 -s0↪→

KeyboardInterrupt
user 3m3.193s

Both with the “rule-minimal” and the “converging” grammar, the rule-step primate
struck again. Getting stuck in a dead end early on (the one way principle) seems to
payoff, though. After aquickconfirmationof soundnessusing insoluble instances,
this effect shall be exemplified by both single and multiple solution problems.

11

4.2 Impossible Partition
TheMonteCarlomethod suffers fromnever knowing for certainno solution exists.
Cranking up the number of steps will only reduce the probability of error. So in
this part only J results are shown.
The two simple cases looked into are (1, 1, 1, 1, 6) and (1, 1, 5, 5, 6).
Again, only user times are kept in the log. Note the empty results.

$> time ./grammar.ijs -js grammar=:\'sumthing.json\' "iter =: _"
converged after 49 steps
results
user 0m0.113s

$> time ./grammar.ijs -js grammar=:\'double_trouble.json\' "iter
=: _"↪→

converged after 127 steps
results
user 0m17.563s

4.3 Single Solution Problems
Where there is a solution, both implementations can be assessed and compared.

problem (1, 1, 3, 4, 5) (2, 2, 3, 4, 5)
steps time # steps time

Monte Carlo 69 0.036s 76 2m51.941s
custom J 69 1.153s 76 3.752s

Obviously, the J implementation is more reliable.

4.4 Multiple Solution Problems

problem (1, 1, 1, 1, 2) (1, 2, 2, 3, 3)
steps time # steps time

Monte Carlo ? >6m0.000s ? >6m0.000s
custom J 49 0.071s 112 2.629s

TheMonteCarlo basedprogram takes far too longwhen exposed to problemswith
multiple solutions, whereas the custom J implementation provided the correct set
of answers quickly.

4.5 Conclusion
According to the results obtainedand their interpretations asput forth above, there
are two main concerns at play when it comes to simulations of grammars.
First and foremost, the set of rules needs to be kept minimal lest the runtime suffer
tremendously (rule-step primate effect). Second though, crafting the rules to be ow
further counteracts andameliorates the combinatorial explosion (onewayprinciple).
Further study might well be directed to a deeper look into these effects.

12

A Code Listing
#!/usr/bin/ijconsole

NB. === show usage if args are bad ===
USAGE =: 0 : 0

5 script usage:
./grammar.ijs -js "grammar=.\'<filename>\' iter=.<number>"
)
hasdef =: 13 : '0 <: 4!:0 y'
0"_@".&>"(0) 3 }. ARGV

10 {{ if. -.*./hasdef'grammar';'iter' do. exit 1[echo USAGE end. }}0

NB. === read the grammar file ===
load'convert/json'
jsn =: dec_json freads grammar

15 'rules start_symbol term_symbols var_symbols' =: ({:/:{.) jsn

NB. === get all substitutions ===
where =: >@] (I.@E.~ +"0 1 0:, #@]) 0 {:: [
presuf =: ((<@{.)`(<@}.))"0 _

20 sub =: 1 0 2 <@;@:{"1 {:@[,. where presuf"1 >@]
step =: (>rules) <@:sub"1 0/]

NB. === advance to next iteration ===
terminal =: (;term_symbols) *./@:e.~ >

25 filterminal =: #~ terminal"0
union =:],-.

explore =: 3 : 0
if. iter = yet =: >: yet do. y return. end.

30 res =: res union newres =. filterminal y
done =: done, newdone =. y -. newres, done
if. 0 = #newdone do.
echo 'converged after ', ' steps',~ ": <: yet
y return.

35 end.
~. ; step newdone

)

NB. === run iteration, show result ===
40 res =: done =: a: $~ yet =: 0

result =: res union filterminal explore^:_ ,<start_symbol
exit 0 [echo 'results', ": result

13

B Further Reading

References
[1] Christian Höner zu Siederdissen, Ivo L. Hofacker, and Peter F. Stadler. Product

grammars for alignment and folding. IEEE/ACMTransactions on Computational
Biology and Bioinformatics, 12(3):507–519, 2014.

[2] Christian Höner zu Siederdissen, Sonja J. Prohaska, and Peter F. Stadler.
Algebraic dynamic programming over general data structures. BMC
Bioinformatics, 16, 2015.

14

	Partition
	Problem Statement
	Mathematical Model
	Insights

	Chomsky Grammar
	Motivation
	Mathematical Model
	Iterative Substitution
	Implementation

	A Grammar for the Partition Problem
	The Grammar and Numbers of Rules
	The Empty Language; Completeness and Soundness
	The Grammar Explained

	Case Studies
	Comparative Study
	Impossible Partition
	Single Solution Problems
	Multiple Solution Problems
	Conclusion

	Code Listing
	Further Reading

