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Introduction




APCol systems

APCol systems (Automaton-like P colonies)

were introduced in! as an extension of P colonies?

- a very simple
variant of membrane systems inspired by colonies of formal

grammars.

L. Cienciala, L. Ciencialové, and E. Csuhaj-Varji. “Towards on P colonies
processing strings”. In: Proc. BWMC 2014, Sevilla, 2014. Sevilla, Spain: Fénix
Editora, 2014, pp. 102-118.

2). Kelemen, A. Kelemenova, and Gh. P5un. “Preview of P colonies: A
biochemically inspired computing model”. In: Workshop and Tutorial
Proceedings. Ninth International Conference on the Simulation and Synthesis
of Living Systems (Alife 1X). Boston, Mass, 2004, pp. 82-86.



Introduction

An APCol system consists of
e a finite number of components called agents - finite
collections of objects embedded in a membrane

e a shared environment, that is represented by a string.

Agents
e equipped with programs which are composed from rules that
allow them to interact with their environment.

e Capacity - the number of objects inside each agent is constant
and it is usually a very small number: 1, 2 or 3.



Introduction

Environment

e The environmental string is processed by the agents

e |t is used as a communication channel for the agents as well.
Through the string, the agents are able to affect the
behaviour of another agent.



Introduction

The activity of the agents is based on rules3.

Rules

3). Kelemen, A. Kelemenova, and Gh. P5un. “Preview of P colonies: A
biochemically inspired computing model”. In: Workshop and Tutorial
Proceedings. Ninth International Conference on the Simulation and Synthesis
of Living Systems (Alife 1X). Boston, Mass, 2004, pp. 82-86.



Introduction

The activity of the agents is based on rules.

Rules

e Rewriting rule a — b - rewrite (evolve) one object a to object
b. Both objects are placed inside the agent.

Rewriting rule a — b

Oz
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Introduction

The activity of the agents is based on rules.

Rules

e Rewriting rule a — b - rewrite (evolve) one object a to object
b. Both objects are placed inside the agent.

e Communication rule ¢ <+ d - exchange object ¢ placed inside

the agent with object d in the string.

Communication rule ¢ < d

(c)  wdab...
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Introduction

Programs
The rules are combined into programs in such a way that all
objects inside the agent are affected by execution of the rules.

The number of rules in the program is the same as the number of

objects inside the agent.
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APCol systems

Definition (APCol system®)
An APCol system is a construct
MN=(0,e, A1,...,Ap), where
e O is an alphabet; its elements are called the objects,

e e € O, called the basic object,

o A;, 1 << n, are agents.

3L. Cienciala, L. Ciencialovd, and E. Csuhaj-Varjii. “Towards on P colonies
processing strings”. In: Proc. BWMC 2014, Sevilla, 2014. Sevilla, Spain: Fénix
Editora, 2014, pp. 102-118.



APCol systems

Definition (Agent)
Agent is a triplet A; = (wj, P, F;), where

e w; is a multiset over O, describing the initial state (content)
of the agent, |w;| = 2,
e Pi={pi1,...,piK} is a finite set of programs associated

with the agent, where each program is a pair of rules. Each
rule is in one of the following forms:

e a— b, where a,b € O, called an evolution rule,
e c <> d, where ¢,d € O, called a communication rule,

e F; C O* is a finite set of final states (contents) of agent A;,



APCol systems

Context programs

Both rules in a program can be communication rules, an agent
can work with two objects in the string in one step of the
computation. The agent can act only in one place in a
computation step and the change of the string depends both on
the order of the rules in the program and on the interacting

objects.

e (a<» b;c <> d)-[ac] wbdw' = [bd] wacw’

e (a<> bc<re)-lac] wbw' = [be] wacw’

(

e (c+>d;a< b)-[ac] wdbw' = [bd] wcaw’
(

°

> -
c<rea<>b)-[ac] wbw' = [be] wcaw’



APCol systems

Context programs

Both rules in a program can be communication rules, an agent
can work with two objects in the string in one step of the
computation. The agent can act only in one place in a
computation step and the change of the string depends both on
the order of the rules in the program and on the interacting

objects.
o (a<re;c<re)-lac] ww' = [ee] wacw'
o (e<> be<> d)-[ee] wbdw' = [bd] ww'
o (e d;e<> b) - [ee] wdbw' = [ee] ww'
o (e<re;e<>d); (e<>e;c+>d),...-these programs can be

replaced by programs of type (e — e;c <> d).



APCol systems

Configutation of an APCol system

A configuration of an APCoL system [1 is given by
(w;wi,...,wy), where |w;| =2, 1 </ < n, w; represents all the
objects placed inside the i-th agent and w € (O — {e})* is the
string to be processed.

Initial configuration

Aan initial configuration of the APCol system is an (n + 1)-tuple
¢ = (w;wi,...,ws) where w is the initial state of the environment
and the other n components are multisets of strings of objects,
given in the form of strings, the initial states the of agents.

10



APCol systems

Computational step

At each step of the computation every agent attempts to find
one of its programs to use. If the number of applicable programs
is higher than one, the agent non-deterministically chooses one of
them. At every step of computation, the maximal possible
number of agents have to perform a program.

Computation, halting computation

By applying programs, the automaton-like P colony passes from
one configuration to another configuration. A sequence of
configurations starting from the initial configuration is called a
computation. A configuration is halting if the APCol system has
no applicable program.

11



APCol systems

Accepting mode
In the case of accepting mode, a computation is called accepting

if and only if:
e it starts with string to be processed as an initial content of
the environment
e the computation is halting
e at least one agent is in final state

e the environmental string is reduced to €

12



APCol systems

The results about accepting power of APCol systems?:

e The family of languages accepted by jumping finite automata®
is properly included in the family of languages accepted by
APCol systems with one agent

e any recursively enumerable language can be obtained as a
projection of a language accepted by an APCol system with
two agents.

4L. Cienciala, L. Ciencialovd, and E. Csuhaj-Varji. “Towards on P colonies
processing strings”. In: Proc. BWMC 2014, Sevilla, 2014. Sevilla, Spain: Fénix
Editora, 2014, pp. 102-118.

®Alexander Meduna and Petr Zemek. “Jumping Finite Automata.”. In: Int. J.
Found. Comput. Sci. 23.7 (2012), pp. 1555-1578.

13



APCol systems

Generating mode
The string wg is generated by [1 iff

e there exists computation starting in an initial configuration
(€;wi1,...,wn) and

e the computation ends by halting in the configuration
(We;wa, ..., wp),

e where at least one agent is in its final state.

14



APCol systems

The results about generative power of APCol systems®:

e Restricted APCol systems with only two agents working in
generating mode can accept any recursively set of natural
numbers.

e A family of sets of natural numbers acceptable by partially
blind register machine can be generated by an APCol system
with one agent with restricted programs.

®Lud&k Cienciala, Lucie Ciencialova, and Erzsébet Csuhaj-Varji. “A class of
restricted P colonies with string environment”. In: Natural Computing 15.4
(2016), pp. 541-549. 1sSN: 1572-9796. DOL: 10.1007/s11047-016-9564-3.
URL: http://dx.doi.org/10.1007/s11047-016-9564-3.

15
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Verifying strings




Verifying strings

Verifying mode
The string wg is verified by [T iff

e there exists computation starting in an initial configuration
(wg; w1, ...,w,) and

e the computation ends by halting in the configuration
(we; wa, ..., wp),

e for every i, 1 < i < m - supposed that the length of the input
string is m - each agent rewrites some symbol at position /i in
some of the time variant of the environmental string occurring
in the computation process.

16



Verifying strings

Some notes
e The length of the environmental string stay constant during
computation

e Agents can use deletion programs - if one agent erases object
from the string some other agent should insert new object in
the place of erased object.

e An agent can insert an object into the string only if another
agent erase object in demanded place.

alb|lc|d|e|f|&|h <a<—>b;e<—>c>

17
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Verifying strings

Some notes
e The length of the environmental string stay constant during
computation

e Agents can use deletion programs - if one agent erases object
from the string some other agent should insert new object in
the place of erased object.

e An agent can insert an object into the string only if another
agent erase object in demanded place.

a dle|f|&8|h (a<—>b;eHC>
@(x%y;x%e}
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Verifying strings

Some notes
e The length of the environmental string stay constant during
computation

e Agents can use deletion programs - if one agent erases object
from the string some other agent should insert new object in
the place of erased object.

e An agent can insert an object into the string only if another
agent erase object in demanded place.

a e| f| 8| h (a<—>b;eHC>
@<X<—>€;X<—>d>
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Verifying strings

Let MM = (O, e, A1, A2) be an APCol system where the object
alphabet is O = {a,4’,b,0',%$,$,%',$", T}, and

18



Verifying strings

Let M = (0, e, A1, A2) be an APCol system where the object
alphabet is O = {a,a, b, b',$,$,%,$", T}, and

A1

(§ < a;$ < b)
(a—a’;b— b
(3 = %;b — %)
$ < a;% < $)
(a—9%",%$—>9%")
(%" < $";9" + b)
$" =% b—9¢)
¥ < a9
(a—9",% =9
% 98,9 —>T)
3" 9% —>T)

Ao

(e —>%e—9)
$-535<9)

3 =988
(%" < $;%" < b)
$—=9%:b—9)
¢ a9
(a—9"% — %)
<$N PN $//7$// PN b>
$" = 9¢;b—9)
$ 9% —>T)
<$N PN $//7$// N -,—>

18
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Verifying strings
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A1

(3 a;$ < b)
(a—a';b— b
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($ < a;% < 9)
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($" < $";9" + b)
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Verifying strings

Let M = (0, e, A1, A2) be an APCol system where the object
alphabet is O = {a,a, b, b',$,$,%,$", T}, and

A1

“©

“©

($ < a;$ < b)
(a—a';b—b)
(a' = $;b — %)
¢ < a8 < 9)
(a—9",$—9")
($” < $":$" < b)
%" =% b—>9)
($ < a;8 < ¢)
(a— 9", =9
$ <9, —>T)
<$// o $$ T)

Az

(e— % e—9)
$+ 89
$—9.%—>9")
(3" < $;9" < b)
$—-9%b—>9)
$ < a8 <%
(a—9"% = 9%")
(3" < 8,8 < b)
($" =8¢ b—9)
$ %% —>T)
(3" < 97,8 > T)

18



Verifying strings
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Verifying strings

Let M = (0, e, A1, A2) be an APCol system where the object
alphabet is O = {a,a, b, b',$,$,%,$", T}, and

A1

$l

$II

($ < a;$ & b)
(a—a;b—b)
(3 = %;b — %)
$' < a8 < 9)
(a—9",%$—9")
($”<—>$”;$"<—>b>
(3" = 9%;b— %)
¢ a9
(a—9",% =9
$ 9.8 —>T)
<$// s (Y7 GV — -,—>

Az

(e —> % —>9)
$-559)
$—9%:5—9"
($" < $:$" < b)
$—>%:b—9)
($ < a;% < §)
(a— 9% =8
($" < $".$" < b)
($" = ¢ b—9)
($ <98 = T)
<$// <_>$//7$// N -,—>

18



Verifying strings

Let M = (0, e, A1, A2) be an APCol system where the object
alphabet is O = {a,a, b, b',$,$,%,$", T}, and

A1

$/

$II

($ < a;$ < b)
(a—a';b—b)
(3 =% = %)
$ < a;$ < %)
(a—9%",%$—>9")
(%" < $";%" + b)
$" = ¢;b— 9
($ < a;% < §)
(a—9",% =9
$ 9.9 —>T)
$" < 98", = T)

Ao

(e—%e—9)
$-8535<9)
$—98,$—-9¢")
<$// 58 o b>
$—-9%b—>9)
¢ = ad <9)
(a—9";% — 9"
($” < $"”.%" < b)
$" = 9%;6—9)
$ %% —>T)
<$N 5§78 — T>
18



Verifying strings
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alphabet is O = {a,4’,b,b',$,$,9,$", T}, and

A1

$ < a% < b)
(a—a;b—b)
(a8 = $;b — )
¢ < a8 < 9)
(a—9",%$—9")
($” < $":$" < b)
(3" = 9%;b— %)
($ < a;8 < ¢
(a— 9", = 9"
$ <9, —>T)
<$// o 8§ T)

This system is able to verify strings of the form a”"b", n > 1.

Ao

(e— % e—9)
$+ 89
$—9.%—>9")
(3" < $;9" < b)
$—-9%b—>9)
$ < a8+ 9%)
(a— 9% — 9"
($" < $".$" < b)
($" = $';b— 9
$ %% —>T)
<$// VN I YN T>

Verifying strings

Let M = (0, e, A1, A2) be an APCol system where the object

18



Simulation of 1/NFA(k)




One-way multihead finite automaton - 1NFA(k)’

A non-deterministic one-way k-head finite automaton is
a construct M = (Q, X%, k,0,>,<, qo, F), where

e @ is the finite set of states,

e 2 is the set of input symbols,

e k > 1 is the number of heads,

e >¢ % and < ¢ X are the left and the right endmarkers,
respectively,

e go € Q is the initial state,
e F C @ is the set of accepting states,

"Markus Holzer, Martin Kutrib, and Andreas Malcher. “Complexity of
multi-head finite automata: Origins and directions”. In: Theoretical Computer
Science 412.1 (2011). Complexity of Simple Programs, pp. 83-96. ISSN:
0304-3975. DOI: https://doi.org/10.1016/j.tcs.2010.08.024.
19


https://doi.org/https://doi.org/10.1016/j.tcs.2010.08.024

One-way multihead finite automaton - 1NFA(k)’

A non-deterministic one-way k-head finite automaton is
a construct M = (Q, %, k,0,>,<, qo, F), where

e { is the partial transition function which maps
Q x (X U {>,<})¥ into subsets of Q x {0,1}%, where 1 means
that the head moves one tape cell to the right and 0 means

that it remains at the same position.

"Markus Holzer, Martin Kutrib, and Andreas Malcher. “Complexity of
multi-head finite automata: Origins and directions”. In: Theoretical Computer
Science 412.1 (2011). Complexity of Simple Programs, pp. 83-96. ISSN:
0304-3975. DOI: https://doi.org/10.1016/j.tcs.2010.08.024.

19
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Computing with 1NFA(k)

an initial configuration

> |d1[d2 (43 |d4 a5 | <

P
=

20



Computing with 1NFA(k)

6(q,a1,as,a2,as) = (q',1,0,1,0)

20



Computing with 1NFA(k)

6(q,a1,as,a2,as) = (q',1,0,1,0)

> |ady|ad2|a3z|asg|as| «

20



Computing with 1NFA(k)

the end of a computation

> |d1[d2 (43 |d4 a5 | <

v

20



Computing with 1NFA(k)

the end of a computation

> |d1[d2 (43 |d4 a5 | <

20



Simulation of 1NFA(k)

Theorem

Let M = (Q,%X,n,0,>,<,q0,F), n>1, be a one-way
non-deterministic n-head finite automaton. Then we can
construct an APCol system 1 with n + 2 agents such that any
word w that can be accepted by M can be verified by I1.

We construct an APCol system
= (O.e.A,‘,7,'_1.A,‘,7,'_2.A1 ..... A,,).

If 2 was scanned by reading head 1, then this fact will be indicated
by having symbol instead of

The verifying process in [1 corresponds to
an accepting process in M.

21



Simulation of 1NFA(k)

Initialization

Two agents will initialize computation by rewriting

>aiay...am< = qo7t71a§12'“n)a§) e af,lq()

g € Q; t:(p,(di,...,dn)) € d(qo,(b1,...,bn))

22



Simulation of 1NFA(k)

For example: Let INFA M

e has 2 heads

e works on input string =aja»asasas

e is in the configuration (g,2,1)

o t:(p,(di,...,dn)) €d(q,(b1,...,bn))

i1 aglz) agl) ag) ag) aé) <0

A1

23



Simulation of 1NFA(k)

For example: Let INFA M

e has 2 heads

e works on input string =ajarasasas

e is in the configuration (g,2,1)

o t:(p,(di,...,dn)) €d(q,(b1,...,bn))

aca [ oo [ 0 [ 0 ] o [

A1

23
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bex |22 | 0 | 20 | a0 | 0

A1

23
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If the head 1 have to move according to t

23
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Simulation of 1NFA(k)

For example: Let INFA M

e has 2 heads

e works on input string =ajarasasas

e is in the configuration (g,2,1)

o t:(p,(di,...,dn)) €d(q,(b1,...,bn))

Qt,2 a§12) agl) ag) ag) aé) <0

A1

Agent rewrites >¢1 h to ee
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Simulation of 1NFA(k)

For example: Let INFA M

e has 2 heads

e works on input string =aja»asasas

e is in the configuration (g,2,1)

o t:(p,(di,...,dn)) €d(q,(b1,...,bn))

vea |2 | 0 | 20 [ 20 | 20| 40

Az

Simulation of the second head move is done
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Simulation of 1NFA(k)

The input string is verified by APCol system only if the

computation halts and agents visited each position in the string.

The input string is accepted by 1NFA(k) only if the automaton is

in the final state and because we set the condition that final state

can be reached only if all heads are " parked” in most right symbol
of the string, all heads must go through each position in the string
(excluding the 0. position).

e To every n-head one-way finite automaton there exists an
APCol system [N with n+ 2 agents such that any word w that
can be accepted by M can be verified by [1.
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Conclusion

e We introduce new computational mode - verifying mode

e We proved that: To every n-head one-way finite automaton
there exists an APCol system [1 with n + 2 agents such that
any word w that can be accepted by M can be verified by [1.
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