BZ-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Towards Automated Analysis of Belousov-Zhabotinsky Reactions in a Petri Dish by Membrane Computing using Optic Flow

Benjamin Förster¹

Thomas Hinze²

¹Brandenburg University of Technology Cottbus–Senftenberg, Institute of Computer Science

²Friedrich Schiller University Jena, Department of Bioinformatics

benjamin.foerster@b-tu.de thomas.hinze@uni-jena.de

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

- Motivation ••••••
- BZ-like Reactions

Optic Flow

Future Prospect

Spiking Oscillations in Time and Space

- Widespread medium for signal transduction in biology
- Highly energy-efficient
- Oscillation course easy to generate
- Number and/or periodicity of spikes expresses information
- Utilisation of *frequency encoding* in biology
- Outstanding robustness against environmental perturbations and weakening of the signal when spreading out in space

Example: Ion Channel-Based Temperature Reception

Transient Receptor Potential (TRP) channels highly conserved

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

- With increasing temperature, diminished electrical forces to open molecular gate within TRP channel
- Increasing temperature results in higher frequency of spiking oscillation (warm sensor)
- *Frequency encoding* of temperature within physiological range but non-linear mapping between temperature and oscillation frequency

Notivation	BZ-like Reactions	Motion Segmentation	Optic Flow	Oscillatory Spots	Future Prospect
0000000	0000	0000	00000000000	0	000

Reaction Scheme: Ion Channel as Thermosensor

Species identifiers

A inositol triphosphate (IP3)	Α
B calcium ions outside cell	В
C calcium ions inside cell (output)	С
Dpermeability of ion channel	D
expressed by spatial protein structure	

W ... waste (excess of open-gate D structure)

$$A \xrightarrow{k_1} D; \quad C + 2D \xrightarrow{k_2} 3D; \quad B + D \xrightarrow{k_3} C; \quad D \xrightarrow{k_4} W$$

- Suppliers A (second messenger IP3) and B (Ca^{2+}) fuel the oscillator
- Self-amplifying effect attracts more and more *B* to *enter* the cell leading to fast increase of *C* (positive feedback induces spike)
- Short-time self-amplification, afterwards collapsing due to lack of B
- As soon as enough *B* accumulated, *next spike* generated
- Resembles operation principle of Brusselator

BZ-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spot

Future Prospect

Spiking Behaviour of Thermosensor

- At 20°C (293.15K) spiking period length of 100ms
- · Higher temperature shortens period length
- Thermosensor maps temperature into period length

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

Period Length subject to Environmental Temperature

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

Optic Flow

Oscillatory Spots

Future Prospect

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation

Optic Flow

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons

Optic Flow

Oscillatory Spots

Future Prospect

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons
- \implies Biological systems with common principle of operation

Optic Flow

Future Prospect

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons
- \Longrightarrow Biological systems with common principle of operation

Find a model system in vitro to study behaviour in detail

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

Optic Flow

Oscillatory Spots

Future Prospect

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons
- \implies Biological systems with common principle of operation

Find a model system in vitro to study behaviour in detail

Separation from other systems for isolated consideration

Optic Flow

Future Prospect

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons
- \Longrightarrow Biological systems with common principle of operation

Find a model system in vitro to study behaviour in detail

- Separation from other systems for isolated consideration
- Capability of easy measurement and observation of signal courses in time and space

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- *Ion channels* as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons
- \implies Biological systems with common principle of operation

Find a model system in vitro to study behaviour in detail

- Separation from other systems for isolated consideration
- Capability of easy measurement and observation of signal courses in time and space
- Opportunity for automated analysis of behaviour subject to controllable reaction parameters

Optic Flow

Impetus of Spiking Oscillations in Biology

Found in numerous signal transduction schemes:

- Ion channels as sensors
- Calcium oscillations for intracellular signal propagation
- Neurotransmitters for information exchange across
 neurons
- \implies Biological systems with common principle of operation

Find a model system in vitro to study behaviour in detail

- Separation from other systems for isolated consideration
- Capability of easy measurement and observation of signal courses in time and space
- Opportunity for automated analysis of behaviour subject to controllable reaction parameters

⇒ Belousov-Zhabotinsky reaction scheme in a Petri dish

Motion Segmentation

Optic Flow

Belousov-Zhabotinsky Reaction Scheme in Petri Dish

- Dissipative auto-catalytic loop of two key processes
- Forward process generates molecular *bromine* (BrO₂, brown colour)
- Feedback process consumes bromine to release bromide ions (Br⁻, grey or white colour)
- Injection of *ferroin, cerium or other indicator* acting as reductant to initiate oscillation
- Expanding concentric rings out of an oscillatory spot

www.wikipedia.org

3. 2 HBrO₂ \leftrightarrow BrO₃ + HOBr + H⁺

4. BrO_3^- + $HBrO_2^-$ + $H^+ \leftrightarrow 2 BrO_2^-$ + $H_2^-O_2^-$

5.
$$BrO_2 + Ce^{+3} + H^+ \leftrightarrow HBrO_2 + Ce^{+4}$$

www.univr.it

Processes interact within positive feedback loop (Cerium injection).

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

lotion Segmentation

Optic Flow

Future Prospect

Analysis of Belousov-Zhabotinsky Reactions

- Videos and image sequences document oscillatory behaviour
- · Expanding concentric rings indicate run of the reactions
- Ratio of initial concentrations together with environmental factors like temperature determine oscillation frequency
- Simple in-vitro model for chemical frequency encoding
- Huge amount of video and image data available

www.researchgate.net

\implies Aim: Automated analysis for identification and localisation of oscillatory spots and oscillation frequency in each spot

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

BZ-like Reactions

otion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Application of Membrane Computing

Groups of adjacent *pixels* in similar colour act as *particles*

BZ-like Reactions

lotion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Application of Membrane Computing

- Groups of adjacent *pixels* in similar colour act as *particles*
- Movement of pixel groups (visual attributes) throughout a number of *subsequent images* within a sequence resembles passage of *membranes* by particles

BZ-like Reactions

lotion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Application of Membrane Computing

- Groups of adjacent *pixels* in similar colour act as *particles*
- Movement of pixel groups (visual attributes) throughout a number of *subsequent images* within a sequence resembles passage of *membranes* by particles
- Shape, intensity, or colour of pixels in groups might slightly vary throughout a sequence of images → interactions or modifications of particles when processed within or between membranes

BZ-like Reactions

lotion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Application of Membrane Computing

- Groups of adjacent *pixels* in similar colour act as *particles*
- Movement of pixel groups (visual attributes) throughout a number of *subsequent images* within a sequence resembles passage of *membranes* by particles
- Shape, intensity, or colour of pixels in groups might slightly vary throughout a sequence of images → interactions or modifications of particles when processed within or between membranes

\Longrightarrow Mathematical techniques for analysis of image sequences (Optic Flow) opens a new application of membrane computing.

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

Optic Flow

Scillatory Spots

Future Prospect

Automated BZ Reaction Analysis

Goals

- Identify and count oscillatory spots
- Determine velocity of expanding concentric rings for each spot

Image Sequence Characteristics

What is missing?

- Image sequence of liquids \Rightarrow constant illumination?
- No static background \Rightarrow motion isolation?

What do we have?

- Small motion
- Neighbouring points move in almost the same direction
 - ... but with slight intersection of the expanding concentric rings
- Stationary oscillatory spots
- Huge homogeneous areas
- \implies Motion segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Motion Detection and Segmentation

Goal

Distinct motion areas around different oscillatory spots

Characteristics of a Method that would benefit us

- Works without foreground/background distinction
- Deals with changing illumination
- Can handle homogeneous, expanding areas
- Filters superposition of motion
- Robust to noise
- \Longrightarrow Looking for an egg-laying, milk-bearing woolly sow

Optic Flow

Oscillatory Spots

Future Prospect

Motion Detection and Segmentation

... with resulting vector fields

Method Overview

- Image difference
 - · Needs homogeneous motion areas/rigid bodies
 - Extremely sensitive to noise
- Block matching
 - Divide image into macro blocks and estimate homogeneous motion for each block
 - Erroneous method
 - Can erase critical motion areas
- Optic Flow

3Z-like Reactions

Motion Segmentation

 Oscillatory Spots

Future Prospect

Optic Flow

Characteristics

Advantages

- No fore- and background distinction needed
- Methods with partial robustness to noise exist
- Computes motion direction and velocity for each point, influenced by neighbouring points

Disadvantages

- Sensitive to variations in illumination
- Difficulties with homogeneous areas
- Sensitive to superposition of motions

3Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Optic Flow

Apparent motion of brightness patterns(Horn and Schunck [2])...

- Usually computed on two dimensional grey-value (brightness intensities) sequences
- Results in a vector field

Optic Flow applications:

(also holds for other motion segmentation methods)

- Autonomous driving, robot navigation and interaction with the environment (stereo vision)
- Image compression and reconstruction
- Tracking (e.g. optical computer mice)

BZ-like Reactions

Motion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

James J. Gibson, The perception of the visual world [3].

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

vation BZ-like Rea

eactions Mo

tion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Brightness Constancy Assumption

Constant Brightness Patterns

· Brightness of points in a pattern is expected to be constant

$$E(x(t), y(t), t) = C \text{ (constant)} \Rightarrow \frac{dE}{dt} = 0$$

• It follows a linear equation with two unknowns (u, v)

$$E_x \cdot u + E_y \cdot v + E_t = 0$$
$$u = \frac{dx}{dt}, v = \frac{dy}{dt}$$

 \Longrightarrow Second constraint for motion vector determination needed

tivation BZ-like Reacti

eactions Mo

otion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Brightness Constancy Assumption

Example for a moving brightness pattern. [4]

Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spot

Future Prospect

Aperture Problem

Barberpole Illusion

 First observed and evaluated by Hans Wallach in 1935 [5]

Barberpole [6]

 Various concepts for the second constraint we will use the proposal by Horn and Schunck [2]

Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spot

Future Prospect

Second Constraint

Problem

- each point moves for itself \Rightarrow recovering motions will be impossible

Solution

 assume that neighbouring points undergoing similar motions as the point itself and the motion field varies smoothly everywhere

$$abla^2 u = 0$$
 and $abla^2 v = 0$

penalise deviation from expected smooth variation

Z-like Reactions

otion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Euler-Lagrange Equation

Minimise the Error

$$\mathcal{E} = \int \int \alpha^2 \cdot \mathcal{E}_1^2 + \mathcal{E}_2^2 \, \mathrm{d}x \, \mathrm{d}y$$

- Minimising the sum of the first and second constraint and a weighting factor $\alpha^{\rm 2}$
- Equation will be transformed into a linear equation system and solved with a fixed point iteration scheme

3Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Optic Flow Results

 Optic Flow motion vector field of BZ reaction sequence

Next Steps

- apply a filter to the Optic Flow result
- determine sources of the vector field

Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Recovering the Motion

Expected Motion Field

- · Same velocities around an oscillatory spot
- Motion directions vary only slightly
 - ⇒ Expanding concentric rings
- all motion leading away from a common central point

Filter Expectation

- · Recover the motion that outweighs an area
- Robustness against outliers
- Determine and preserve sinks

3Z-like Reactions

Motion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Smoothing Filter

$$\overrightarrow{V}_{m,n} = (\overrightarrow{V}_{t,x}, \overrightarrow{V}_{t,y})$$
 with $2 \cdot m \cdot n$ elements $V_{t,x}(p,q), V_{t,y}(p,q) \in \mathbb{R}$ with $p = 1, \dots, n$ and $q = 1, \dots, m$

$$S = egin{pmatrix} s_{1,1} & s_{2,1} & s_{3,1} \ s_{1,2} & s_{2,2} & s_{3,2} \ s_{1,3} & s_{2,3} & s_{3,3} \end{pmatrix} = egin{pmatrix} rac{1}{12} & rac{1}{6} & rac{1}{12} \ rac{1}{6} & 0 & rac{1}{6} \ rac{1}{12} & rac{1}{6} & rac{1}{12} \end{pmatrix}$$

$$V_{t+1,x}(p,q) = \sum_{i} \sum_{j} s_{i+2,j+2} \cdot V_{t,x}(p+i,q+j) \quad \text{with} \quad i,j \in \{-1,0,1\}$$
for $V_{t+1,y}(p,q)$, respectively

3Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Resulting Flow Field

- $10\times$, $100\times$, $1000\times$ filter applications
- constraint to determine filter applications automatically

Z-like Reactions

lotion Segmentation

O<mark>ptic Flow</mark> ooooooooooooo Oscillatory Spots

Future Prospect

Vector Field Sources

Determine Sources and Sinks

- · Divergence of a vector field results in a scalar field
- · Each scalar represents how sourcish/sinkish a value is

BZ-like Reactions

Motion Segmentation

D<mark>ptic Flow</mark>

Oscillatory Spots

Future Prospect

Future Prospect

- Finalise the automatic evaluation to receive the number of osciallatory spots and velocity of the concentric rings around them
- Finalise an implementation with self-explaining user interface
- Test different Optic Flow approaches to reduce filter dependency

BZ-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spots

Future Prospect

Thank you very much for your attention!

Towards Automated Analysis of Belousov-Zhabotinsky Reactions using Optic Flow

3Z-like Reactions

Notion Segmentation

Optic Flow

Oscillatory Spot

Future Prospect

Bibliography

"Laboratory assistant."

"https://yubanet.com/wp-content/uploads/2017/09/09-20-2017-PAHO_082A0326.jpg", accessed 2018-08-31.

1

J. J. Gibson, "The perception of the visual world.," 1950.

"Moving brightness pattern."

"http://tcr.amegroups.com/article/viewFile/3200/html/22837", accessed 2018-08-30.

H. Wallach, "Über visuell wahrgenommene bewegungsrichtung," *Psychologische Forschung*, vol. 20, no. 1, pp. 325–380, 1935.

"Barberpole image."

"https://openclipart.org/image/2400px/svg_to_png/175435/barber-pole.png", accessed 2018-08-30.