= DEGLI 5TUDI
x |

1A

CMC 19 — International Conference on Membrane
Computing
Dresden, 4 — 7 September 2018

LUNIVERSI
T
X
QN
ORI I

Time and Space Complexity
of P Systems
~ And Why They Matter ~

Alberto Leporati

Universita degli Studi di Milano - Bicocca
Dip. di Informatica, Sistemistica e Comunicazione (DISCo)
Viale Sarca 336/14 - Milano - Ttaly

E-mail: alberto.leporati@unimib.it

What are P systems?

@ A distributed, parallel model of computation
@ Really, a framework that inspired many models of computation:
m cell-like P systems
m tissue-like P systems
m neural-like P systems
m numerical P systems
B ...
@ Synchronous or asynchronous
@ Most variants are Turing complete, even with one cell

CMC 19 — Dresden — September 6th, 2018 2

What can P systems be used for?

@ Anything, since they are Turing complete

@ But, in particular, anything that requires a distributed, parallel
(synchronous or asynchronous) model of computation

@ For example, simulation of physical / natural systems

@ As Marian Gheorghe says:

P systems are an attractive alternative to mathematical
models, e.g. ordinary differential equations

CMC 19 — Dresden — September 6th, 2018 3

How do we (usually) study P systems?

@ Computability issues:
m IS this variant of P systems Turing-complete?

m What are the computational ingredients needed to reach
completeness / universality?

(frontiers of computability)

@ (Computational) complexity issues:

m IS this variant able to solve {NP, PSPACE, LOGSPACE, ...}—
complete decision problems?

m and their counting versions?
m and their optimization versions?

CMC 19 — Dresden — September 6th, 2018 4

Why is computational
complexity useful?

@ Because It tells us what we can compute, but especially what we
cannot compute

@ Example: assume you want to design a Boolean circuit (with AND,
OR, NOT gates) that computes the PARITY function:

PARITY(X{, .., Xp) = X1 D x, D...D x,

® you want that the circuit has polynomial size (=it is
constructible) and constant depth (= answers in constant time)

m unfortunately, this is not possible [Furst, Saxe, Sipser 1985]: no
(uniform family of) polynomial size constant-depth circuit for

PARITY exists

I
CMC 19 — Dresden — September 6th, 2018

Why is computational
complexity useful?

@ In a sense,

results about computational complexity, usually referred to as
efficiency results,

become
results about the computing power of our models

@ What changes is the universe of problems / languages / functions
considered: P, NP, PSPACE, etc. instead of RE

CMC 19 — Dresden — September 6th, 2018 6

What can P systems be used for?

@ For example, simulation of physical / natural systems
@ However, if the computational model is Turing complete:

m most of dynamic properties are undecidable (see also Rice’s
theorem)

m It can simulate anything (it is universal), but perhaps in an
indirect way (e.qg., it is difficult to program), which is not very
useful

m not even interesting from a theoretical point of view

CMC 19 — Dresden — September 6th, 2018 7

What can P systems be used for?

@ The behavior of small universal systems can be complicated to
understand. Example: Korec’s small universal register machine:

0:(peEc(1), 1, 2) 1:(INc (7), 0)

2 . (INC(6), 3) 3:(peEc (5), 2, 4)

4 : (DEC (6), 5, 3) 5:(INC (), 6)

6 : (DEC (7), 7, 8) 7:(INC (1), 4)

8 : (DEC (6), 9, 0) 9: (INC (6), 10)
10 : (DEC (4), 0, 11) 11 : (DEC (5), 12, 13)
12 : (DEC (5), 14, 15) 13 : (DEC (2), 18, 19)
14 : (DEC (5), 16, 17) 15 : (DEC (3), 18, 20)
16 : (INC (4), 11) 17 : (INC (2), 21)
18 : (DEC (4), 0, 22) 19 : (pec (0), 0, 18)
20 : (INc (0), 0) 21 : (INC (3), 18)

CMC 19 — Dresden — September 6th, 2018 8

What can P systems be used for?

CMC 19 — Dresden — September 6th, 2018 9

What can P systems be used for?

@ For applications / simulations, less powerful than Turing machines
IS better!

m hopefully, dynamic properties are decidable (but what is their
complexity?)

® but, maybe, they cannot simulate interesting phenomena (power
VS. expressivity)

® In any case, they are more interesting from a formal language
point of view

CMC 19 — Dresden — September 6th, 2018 10

The complexity of dynamic behavior

@ Even if a dynamic property is decidable, it may be not accessible in
practice

m example (discussed later): decide whether a neuron ina SN P
system — whose rules use arbitrary regular expressions — will
fire at the next computation step (may involve solving an
NP-complete problem)

m other example: reachability in some variants of Petri nets is
NP-complete

@ Even more, constant time complexity may be inaccessible!

m example: brute-force attack to AES-128, to find the key, given a
plaintext and the corresponding ciphertext

CMC 19 — Dresden — September 6th, 2018 11

An example

SN P systems:
computational completeness

and time complexity

CMC 19 — Dresden — September 6th, 2018 12

SN P systems: definition

An SN P system of degree m > 1 is a construct:
I1=(0, oy, 05, ..., Gy, SYN, IN)
where:
@ O = {a} is the singleton alphabet
@ cells (neurons) o; = (n;, R;) are placed in the nodes of the
synapse graph syn, where:
® N, = 0: initial contents
® R;: finite set of rules
@ syn e {1,2,....m} x {1,2,...,m}: directed graph of synapses,
without self-loops
@ In,out € {1,2,....m}: input and output neurons

CMC 19 — Dresden — September 6th, 2018 13

SN P systems: rules, configurations

The rules can be:
@ firing rules: E/a® — a;d withc =1, d = 0 integers
(if E = a® we simply write a® — a; d)
@ forgetting rules: a> - A withs > 1 and a° ¢ L(E) for any
firing rule E/a® — a; d in the neuron
@ Initial configuration:
® Ny, N, ..., N Spikes in the neurons
m all neurons are open
@ configuration (during computations): for each neuron:
m number of spikes in the neuron
m number of steps to wait until the neuron becomes open

CMC 19 — Dresden — September 6th, 2018 14

SN P systems:
computing functions

Computation of f : N - N

@ the system starts in the initial configuration

@ Input n enters in in, encoded as the time elapsed between two
spikes (unary notation)

@ computation proceeds sequentially in every neuron, and in
parallel between the neurons

m If > 2 rules can be applied in a neuron, a nondeterministic
choice i1s made

= the system is deterministic if L(E;) N L(E;) =& forall I =]
@ If the system halts, then the output f(n) Is read as the time

elapsed between the first two spikes emitted by the output
neuron (to the environment)

CMC 19 — Dresden — September 6th, 2018 15

SN P systems: some variants

Many variants/possibilities:
@ different halting conditions
@ different ways to encode input and output values
@ different ways to compute f: N* — NA
m directly (spike trains in input and output)
m through bijections (N <> N and N4 <> N)
@ generative case: we ignore the input
@ accepting case: we ignore the output

@ SN P systems are universal
@ Several normal forms

CMC 19 — Dresden — September 6th, 2018

16

SN P systems: completeness

109@)=11gv—11

@ ldea: simulating Korec’s |
small universal register ()in
machine Module INPUT

@ Input and output must be

/ | N
formatted in an appropriate @ml ﬁmz

lo
way Register machine simulator

@ General design of the
universal SN P system:

Module OUTPUT

> Do

. 10¥e =1

CMC 19 — Dresden — September 6th, 2018 17

SN P systems: completeness

@ Note: if register r contains
n, then the corresponding
neuron contains 2n spikes

CMC 19 — Dresden — September 6th, 2018 18

SN P systems: completeness

ECOMUNICATIOMNI

@ module SUB,
simulating i: DEC(r), J, K

CMC 19 — Dresden — September 6th, 2018 19

SN P systems: completeness

ECOMUNICATIOMNI

@ the INPUT module

CMC 19 — Dresden — September 6th, 2018 20

SN P systems: completeness

ECOMUNICATIOMNI

@ the OUTPUT module

8 r dy
(ot a2 = a0 j——(a = w0

T

(m(aa,)*/a — a: 0

out J’

CMC 19 — Dresden — September 6th, 2018 21

Size of SN P systems

Description size of I1: number of bits required to represent it:
@ no Dbits for the alphabet
@ < m 2 bits for the synapse graph
@ In and out: Ilg m bits each
@ for every neuron o; :
EN, <N — IgN bits
m At most R rules; for each rule E/a® — a; d
type e {firing, accepting} — 1 bit
regular expression E — size < S bits
two numbers — 2 Ig N bits
@ Totalsize: m*+2Ilgm+m(IgN+R (1 + S+ 2IgN)) bits

CMC 19 — Dresden — September 6th, 2018 22

Deterministic SN P systems

@ explicit simulation by DTMs given in [IJUC 2009]
m t steps of any deterministic SN P system I1 can be simulated
In poly(t, description size) steps of a DTM
@ crucial assumption: regular expressions are of very restricted
form, for example:
ma,withi<3
m a(aa)?
(the membership problem must be polynomial also in the succint
version)
@ hence, to solve NP-complete problems we either need:
m nondeterminism (trivial), or complicated reg. expr., or
® some way to trade-off space for time (division, budding,...)

CMC 19 — Dresden — September 6th, 2018 23

The Subset Sum problem

@ instance:
m a (multi)set V = {v,,v,,...,v } of positive integer values
E a positive integer value S

@ question: is there a sub(multi)set ACV such that

> a=S57?

@ numerical, pseudo-polynomial NP-complete problem
@ Instance size:
® let K = max{v,,v,,...,V,, S}
m each number requires Ig K bits to be represented
m total size: ©(n Ig K)

CMC 19 — Dresden — September 6th, 2018 24

Dynamic programming solution

m boolean matrix M[1..n, 0..5]
m M[i, j] = 1 < there exists Bc{v,,...,v;} such that » b= j

m space and time complexity: ®(nS) = ©(nK) beB
A R j S
1
-1
i

N r solution

CMC 19 — Dresden — September 6th, 2018 25

Dynamic programming solution

m pseudo-code for filling the matrix:

SUBSET SUM({v1,v2, ..., Un},)

for j— 0 to S
do M|[1,3] < 0
MI[L,0] — M1, 2] — 1
fori— 2 ton
do for j«— 0 to S
do Mi,j] — M[i — 1.7]
if j = v, and M[i — 1,5 —v;| > M|, j]
then M[i, 5] «— M[i — 1,7 — vy]
return M [n, 5]

|
CMC 19 — Dresden — September 6th, 2018 26

Unary regular languages

Remark: in SN P systems we work with unary languages
@ every string Is bijectively associated with its length
@ a compact representation of E works on the lengths
@ regular expressions on natural numbers
m union and Kleene star are computed as usual

m L, oL, all numbers of L, are summed with those of
L, in all possible ways

Example: {2,3} ¢ {2,5} = {4,5,7,8}

CMC 19 — Dresden — September 6th, 2018 27

Solving Subset Sum with one rule !

@ Let ({vy,V,,...,V,}, S) be an instance of Subset Sum
@ Consider the languages (in succint form):
L, ={0,v;}, forie {1,2,...,n}
@ LetL=L;elL,e... 0
@ Membership problem:isSe L ?

m the answer is yes if and only if the instance of
Subset Sum is positive

@ Deciding whether the rule E/a> - a;dcan
be applied, when L = L(E) and the neuron
contains S spikes, can be difficult \

CMC 19 — Dresden — September 6th, 2018

Solving Subset Sum with SN P systems

@ In the same paper, we also provided

m a semi-uniform solution of Subset Sum by (extended) SN P
systems

® a uniform version

@ But with extended rules, and the numbers are provided
simultaneously as inputs in binary form

m they are converted from binary to unary
@ The output is observed after a given number of steps
@ Nondeterminism is kept at minimum

@ In practice, a (nondeterministic) circuit made of neurons!

CMC 19 — Dresden — September 6th, 2018 29

Solving Subset Sum
(uniform solution)

(Sequence of spikes (Sequence of spikes (Sequence of spikes
encoding v,) - T encoding v,) encoding S')
(Binary tounary - (Binary tounary (Delay
conversion) conversion) subsystem)

m the output has to be @ -

observed exactly
after 3k+6 steps

= |ength of delay aa0

(Unary to | ‘ .
binary ‘ (Bit by bit

subsystem: 3k+2 comversion) | conparison) |

eps e

(Tothe environment)

0

k-1

CMC 19 — Dresden — September 6th, 2018 30

The Comparison subsystem

Xo Yo Xp-1 Yi-1

m emits one spike if and only if || |
the two numbers given in input
(expressed in binary form) are
equal

m the subsystem computes the
following boolean function:

Cj{:}h-'[P.iRE{;IT(), R o T IO 1 [TR, y;;_l)

k-1 k—1
= /\ (—lli;!?g 3-y;]] :_'(V(mi :'yi})
i=0 L

(Bit by bit
comparison)

(To the environment)

CMC 19 — Dresden — September 6th, 2018 31

Space complexity results

@ Space complexity = #objects + #membranes
@ The model: P systems with active membranes

@ PSPACE = decision problems solved by polynomial space P
systems

@ The same for EXPSPACE and higher classes
But, curiously,

@ PSPACE = decision problems solved by logarithmic (or even
constant) space P systems

@ Another possible approach: IP = PSPACE (dP systems?)

CMC 19 — Dresden — September 6th, 2018 32

Space complexity results

@ A toolbox for designing P systems with active membranes
m polynomial number of charges
m several other simulations

@ Use of oracles introduces a hierarchy based on the nesting depth of

the membrane structure
n

m linear (and, now) depth: PSPACE

"logn

= depth 1: P#P
& In the middle: hic sunt leones!

CMC 19 — Dresden — September 6th, 2018 33

The factorization problem

@ Given n = pqg, where p and q are prime numbers, it is difficult to
compute p (or Q)

@ Let m = log, n, then trying to divide by all numbers between 2 and
\/n takes an exponential time:

0(/n)=0(2") =0(2"?)

@ Nobody knows whether a polynomial time algorithm exists

@ We have seen a brute-force parallel attack, by P systems

@ Is there a « better » parallel algorithm?

CMC 19 — Dresden — September 6th, 2018 34

The factorization problem

@ Example of instance:

RSA-768 = 12301866845301177551304949583849627207728535695
95334792197322452151726400507263657518745202199
7864693899564 7494277406384592519255732630345373
15482685079170261221429134616704292143116022212
4047927473779408066535141959745985 6902143413

CMC 19 — Dresden — September 6th, 2018 35

The factorization problem

@ Example of instance:

RSA-768 = 12301866845301177551304949583849627207728535695
95334792197322452151726400507263657518745202199
7864693899564 7494277406384592519255732630345373
15482685079170261221429134616704292143116022212
4047927473779408066535141959745985 6902143413

= 3347807169895689878604416984821269081 7704794983
71376856891243138898288379387800228761471165253
1743087737814467999489

x 36746043666799590428244633799627952632279158164
34308764267603228381573966651127923337341714339
6810270092798736308917

CMC 19 — Dresden — September 6th, 2018

36

The factorization problem

@ Considerp(n) =(p—1)(q—-1) (Euler’s totient function)
@ Ingeneral, p(n) =[x eN:1 < x <n and GCD(x,n) = 1|

@ If we know the factorization of n then computing ¢(n) is easy,
otherwise it is difficult

m We would break the cryptosystem RSA
m We could factorize n:

p(n)=@P-D@—-1D=pg—(p+q)+1
from where:

pq=n
ptq=n—¢Mn) +1
p and g are the solutions of x? — (p + ¢)x + pq = 0

CMC 19 — Dresden — September 6th, 2018 37

The factorization problem

@ So, computing ¢(n) has the same difficulty as factorizing n
@ Question: do we know a parallel algorithm to compute
¢(n)=[x€eN:1<x<n and GCD(x,n) =1|?

@ Answer: no, and the bad news are that GCD seems to be not
parallelizable!

CMC 19 — Dresden — September 6th, 2018 38

Computational power vs Expressivity

@ Usually, Turing-completeness is proved by simulating Turing
machines or register machines

@ Example: simulation of register machines by SN P systems

m assume simulation of a deterministic register machine,
computing functions N - N

@ This means that SN P systems can be used to compute any
computable function

@ Exercise: design a SN P system that, given n € N, computes and
outputs n?

m IS the design process simple?
® IS It handy?

CMC 19 — Dresden — September 6th, 2018 39

A “high-level” programming language
for building P systems

@ ldea:

m Wwe may first write a program for a register machine, and then
build the SN P system by composing ADD and SUB modules

+¢ this substitution can be performed automatically
¢ It works for many universal models of P systems

@ The difficulty in writing the program may depend upon the function
to be computed, hence we could:

® Write a program for a “high-level” programming language,
which is then easily compiled to an equivalent program for a
register machine

m build the P system by composing ADD and SuB modules

CMC 19 — Dresden — September 6th, 2018 40

A “high-level” programming language
for building P systems

@ Proposal: make both translations automatically, that is:

High-level
programs

compiler

7|

Programs for
register machines

SN P systems

oo

Omp j]e T

EN P systems

@ The first compiler would be fixed, the others would depend upon the
model of P systems considered

@ The output could be given in P-Lingua
@ To start with, the high-level language should be very easy
m a possible candidate: the WHILE language
m of course, the WHILE language is Turing-complete

CMC 19 — Dresden — September 6th, 2018

41

A “high-level” programming language
for building P systems

@ The WHILE language:
= Variables x;, for JeN, each containing a non-negative integer value
® Assignment commands:

X =0

X =X+ 1 X =% =1 (truncated decrement)

@ While commands:
while x, =0 do C
where C is an arbitrary command
m Compound commands:
begin C;; C,; ... C.; end (m>0)

where C;; C,;

... C,, are arbitrary commands

® A program is a compound command

CMC 19 — Dresden — September 6th, 2018 42

A “high-level” programming language
for building P systems

@ The WHILE language can be extended through macros of the kind
X; = Op(X;, %)
For example, Op can be Sum, Product, TruncatedSum,
IntegerDivision, Mod, CantorPairingFunction, ...
@ Other natural extensions/alternatives:

® Using a more sophisticated/expressive language

** programs would be easier to write, but on the other hand
+* the compiler would be harder to write

m compiling to more sophisticated/expressive low-level languages
(RAM machines, appropriate assembly languages, ...)

CMC 19 — Dresden — September 6th, 2018 43

A “high-level” programming language
for building P systems

@ However, in this way P systems are used in the sequential way

m What about a concurrent programming language?
¢ Inspired from Occam?
m What about distributed (and concurrent), possibly asynchronous,
languages?
*» SCOOP? Message-passing, it allows the creation of
« contracts »

[C. Corrodi, A. Heul3ner, C.M. Poskitt: A Semantics Comparison
Workbench for a Concurrent, Asynchronous, Distributed
Programming Language. arxiv:1710.03928, October 2017]

CMC 19 — Dresden — September 6th, 2018 44

P systems and Cryptography

A topic deeply related with computational complexity: Cryptography

@ Some (provocative?) ideas:

m use of P systems to implement cryptographic operations
(encryption, PRNGs, ...)

® even more: cryptographic protocols
m even more: DApps (Decentralized Apps): see Ethereum

® even more: computations on encrypted data. It has been done for
Boolean circuits and for Turing machines

CMC 19 — Dresden — September 6th, 2018 45

Killer applications for P systems

We also need parallel, distributed, interesting problems

@ Is a problem parallelizable?

m try to design a Boolean circuit; in which complexity class is the
problem?

m What kind of circuit? (Recall the PARITY example)
For example, threshold circuits seem to be related with
monodirectional P systems with active membranes
@ However, a killer app would probably be a decentralized app (DApp)

m unfortunately, | do not know any really interesting candidate
problem / algorithm / protocol. Maybe some form of consensus
protocol?

CMC 19 — Dresden — September 6th, 2018 46

Last slide...

Thanks for
your attention |

Danke Fir Thre Aufmerksamkeit]

CMC 19 — Dresden — September 6th, 2018

47

