
Time and Space Complexity

of P Systems

 And Why They Matter 

Alberto Leporati

Università degli Studi di Milano – Bicocca

Dip. di Informatica, Sistemistica e Comunicazione (DISCo)

Viale Sarca 336/14 – Milano - Italy

E-mail: alberto.leporati@unimib.it

CMC 19 – International Conference on Membrane 

Computing

Dresden, 4 – 7 September 2018



What are P systems?

A distributed, parallel model of computation

Really, a framework that inspired many models of computation:

cell-like P systems

tissue-like P systems

neural-like P systems

numerical P systems

…

Synchronous or asynchronous

Most variants are Turing complete, even with one cell

CMC 19 – Dresden – September 6th, 2018 2



What can P systems be used for?

Anything, since they are Turing complete

But, in particular, anything that requires a distributed, parallel

(synchronous or asynchronous) model of computation

For example, simulation of physical / natural systems

As Marian Gheorghe says:

CMC 19 – Dresden – September 6th, 2018 3

P systems are an attractive alternative to mathematical 

models, e.g. ordinary differential equations



How do we (usually) study P systems?

Computability issues:

is this variant of P systems Turing-complete?

what are the computational ingredients needed to reach 

completeness / universality?

(frontiers of computability)

(Computational) complexity issues:

is this variant able to solve {NP, PSPACE, LOGSPACE, …}–

complete decision problems?

and their counting versions?

and their optimization versions?

CMC 19 – Dresden – September 6th, 2018 4



Why is computational

complexity useful?

Because it tells us what we can compute, but especially what we 

cannot compute

Example: assume you want to design a Boolean circuit (with AND, 

OR, NOT gates) that computes the PARITY function:

PA R IT Y (𝑥1, … , 𝑥𝑛) = 𝑥1 ⊕ 𝑥2 ⊕…⊕ 𝑥𝑛

you want that the circuit has polynomial size (= it is 

constructible) and constant depth (= answers in constant time)

unfortunately, this is not possible [Furst, Saxe, Sipser 1985]: no 

(uniform family of) polynomial size constant-depth circuit for 

PARITY exists

CMC 19 – Dresden – September 6th, 2018 5



Why is computational

complexity useful?

In a sense,

results about computational complexity, usually referred to as 

efficiency results,

become

results about the computing power of our models

What changes is the universe of problems / languages / functions 

considered: P, NP, PSPACE, etc. instead of RE

CMC 19 – Dresden – September 6th, 2018 6



What can P systems be used for?

For example, simulation of physical / natural systems

However, if the computational model is Turing complete:

most of dynamic properties are undecidable (see also Rice’s 

theorem)

it can simulate anything (it is universal), but perhaps in an 

indirect way (e.g., it is difficult to program), which is not very 

useful

not even interesting from a theoretical point of view

CMC 19 – Dresden – September 6th, 2018 7



What can P systems be used for?

The behavior of small universal systems can be complicated to 

understand. Example: Korec’s small universal register machine:

CMC 19 – Dresden – September 6th, 2018 8

0 : (DEC(1), 1, 2) 1 : (INC (7), 0)

2 : (INC(6), 3) 3 : (DEC (5), 2, 4)

4 : (DEC (6), 5, 3) 5 : (INC (5), 6)

6 : (DEC (7), 7, 8) 7 : (INC (1), 4)

8 : (DEC (6), 9, 0) 9 : (INC (6), 10)

10 : (DEC (4), 0, 11) 11 : (DEC (5), 12, 13)

12 : (DEC (5), 14, 15) 13 : (DEC (2), 18, 19)

14 : (DEC (5), 16, 17) 15 : (DEC (3), 18, 20)

16 : (INC (4), 11) 17 : (INC (2), 21)

18 : (DEC (4), 0, 22) 19 : (DEC (0), 0, 18)

20 : (INC (0), 0) 21 : (INC (3), 18)



What can P systems be used for?

Another view of Korec’s small universal register machine:

CMC 19 – Dresden – September 6th, 2018 9



What can P systems be used for?

For applications / simulations, less powerful than Turing machines 

is better!

hopefully, dynamic properties are decidable (but what is their 

complexity?)

but, maybe, they cannot simulate interesting phenomena (power

vs. expressivity)

in any case, they are more interesting from a formal language 

point of view

CMC 19 – Dresden – September 6th, 2018 10



The complexity of dynamic behavior

Even if a dynamic property is decidable, it may be not accessible in 

practice

example (discussed later): decide whether a neuron in a SN P 

system – whose rules use arbitrary regular expressions – will  

fire at the next computation step (may involve solving an            

NP-complete problem)

other example: reachability in some variants of Petri nets is    

NP-complete

Even more, constant time complexity may be inaccessible!

example: brute-force attack to AES-128, to find the key, given a 

plaintext and the corresponding ciphertext

CMC 19 – Dresden – September 6th, 2018 11



An example

CMC 19 – Dresden – September 6th, 2018 12

SN P systems:

computational completeness

and time complexity



CMC 19 – Dresden – September 6th, 2018 13

SN P systems: definition

An SN P system of degree m 1 is a construct:

 (O, 1, 2, …, m, syn, in)

where:

O {a} is the singleton alphabet

cells (neurons) i (ni, Ri) are placed in the nodes of the 

synapse graph syn, where:

ni 0: initial contents

Ri: finite set of rules

syn  {1,2,…,m}  {1,2,…,m}: directed graph of synapses, 

without self-loops

in, out {1,2,…,m}: input and output neurons



CMC 19 – Dresden – September 6th, 2018 14

SN P systems: rules, configurations

The rules can be:

firing rules:  E/ac a; d  with c 1, d 0 integers

(if E ac we simply write ac a; d)

forgetting rules: as  with s 1 and as  L(E) for any 

firing rule E/ac a; d  in the neuron

initial configuration:

n1, n2, …, nm spikes in the neurons

all neurons are open

configuration (during computations): for each neuron:

number of spikes in the neuron

number of steps to wait until the neuron becomes open



CMC 19 – Dresden – September 6th, 2018 15

SN P systems:

computing functions

Computation of f : ℕ ℕ 

the system starts in the initial configuration

input n enters in in, encoded as the time elapsed between two 

spikes (unary notation)

computation proceeds sequentially in every neuron, and in 

parallel between the neurons

if  2 rules can be applied in a neuron, a nondeterministic
choice is made

the system is deterministic if L(Ei )  L(Ej ) =  for all i  j

if the system halts, then the output f(n) is read as the time 

elapsed between the first two spikes emitted by the output 

neuron (to the environment)



CMC 19 – Dresden – September 6th, 2018 16

SN P systems: some variants

Many variants/possibilities:

different halting conditions

different ways to encode input and output values

different ways to compute f: ℕ ℕ

directly (spike trains in input and output)

through bijections (ℕ  ℕ and ℕ  ℕ)

generative case: we ignore the input

accepting case: we ignore the output

SN P systems are universal

Several normal forms



CMC 19 – Dresden – September 6th, 2018 17

SN P systems: completeness

Idea: simulating Korec’s 

small universal register 

machine

Input and output must be 

formatted in an appropriate 

way

General design of the 

universal  SN P system:



CMC 19 – Dresden – September 6th, 2018 18

SN P systems: completeness

module ADD, simulating i: INC(r), j

Note: if register r contains 

n, then the corresponding 

neuron contains 2n spikes



CMC 19 – Dresden – September 6th, 2018 19

SN P systems: completeness

module SUB, 

simulating i: DEC(r), j, k



CMC 19 – Dresden – September 6th, 2018 20

SN P systems: completeness

the INPUT module



CMC 19 – Dresden – September 6th, 2018 21

SN P systems: completeness

the OUTPUT module



CMC 19 – Dresden – September 6th, 2018 22

Size of SN P systems

Description size of : number of bits required to represent it:

no bits for the alphabet

m 2 bits for the synapse graph

in and out: lg m bits each

for every neuron i : 

ni N lg N bits

At most R rules; for each rule E/a c a; d 

type {firing, accepting}  1 bit

regular expression E size S bits

two numbers 2 lg N bits

Total size:  m2 + 2 lg m + m (lg N + R (1 + S + 2 lg N)) bits



CMC 19 – Dresden – September 6th, 2018 23

Deterministic SN P systems

explicit simulation by DTMs given in [IJUC 2009]

t steps of any deterministic SN P system can be simulated 

in poly(t, description size) steps of a DTM

crucial assumption: regular expressions are of very restricted 

form, for example:

ai, with i 3

a(aa)+

(the membership problem must be polynomial also in the succint 

version)

hence, to solve NP-complete problems we either need:

nondeterminism (trivial), or complicated reg. expr., or

some way to trade-off space for time (division, budding,…)



24

instance:

a (multi)set V = {v1,v2,…,vn} of positive integer values

a positive integer value S

question: is there a sub(multi)set A V such that 

numerical, pseudo-polynomial NP-complete problem

instance size:

let K = max{v1,v2,…,vn, S} 

each number requires lg K bits to be represented

total size: (n lg K)




=
Aa

Sa ?

The Subset Sum problem

CMC 19 – Dresden – September 6th, 2018



CMC 19 – Dresden – September 6th, 2018 25

Dynamic programming solution




=
Bb

jb

boolean matrix M[1..n, 0..S]

M[i, j] = 1 there exists B {v1,…,vi} such that

space and time complexity: (nS) = (nK)

 

M 0 S j 

1 

n 

j –vi 

i 

i –1 

solution



CMC 19 – Dresden – September 6th, 2018 26

Dynamic programming solution

pseudo-code for filling the matrix:



CMC 19 – Dresden – September 6th, 2018 27

Unary regular languages

Remark: in SN P systems we work with unary languages

every string is bijectively associated with its length

a compact representation of E works on the lengths

regular expressions on natural numbers

union and Kleene star are computed as usual

L1 • L2: all numbers of L1 are summed with those of 

L2 in all possible ways

Example: {2,3} • {2,5} = {4,5,7,8}



28

Let ({v1,v2,…,vn}, S) be an instance of Subset Sum

Consider the languages (in succint form):

Li = {0,vi},   for i {1,2,…,n}

Let L = L1 • L2 • … • Ln

Membership problem: is S L ?

the answer is yes if and only if the instance of 

Subset Sum is positive

CMC 19 – Dresden – September 6th, 2018

Solving Subset Sum with one rule !

Deciding whether the rule E/a S a; d can 

be applied, when L = L(E) and the neuron 

contains S spikes, can be difficult



29

In the same paper, we also provided

a semi-uniform solution of Subset Sum by (extended) SN P 

systems

a uniform version

But with extended rules, and the numbers are provided 

simultaneously as inputs in binary form

they are converted from binary to unary

The output is observed after a given number of steps

Nondeterminism is kept at minimum

In practice, a (nondeterministic) circuit made of neurons!

CMC 19 – Dresden – September 6th, 2018

Solving Subset Sum with SN P systems



CMC 19 – Dresden – September 6th, 2018 30

Solving Subset Sum

(uniform solution)

the output has to be 

observed exactly 

after 3k+6 steps

length of delay 

subsystem: 3k+2 

steps



31

emits one spike if and only if 

the two numbers given in input 

(expressed in binary form) are 

equal

the subsystem computes the 

following boolean function:

The Comparison subsystem

CMC 19 – Dresden – September 6th, 2018



Space complexity results

Space complexity = #objects + #membranes

The model: P systems with active membranes

PSPACE = decision problems solved by polynomial space P 

systems

The same for EXPSPACE and higher classes

But, curiously,

PSPACE = decision problems solved by logarithmic (or even 

constant) space P systems

Another possible approach: IP = PSPACE (dP systems?)

CMC 19 – Dresden – September 6th, 2018 32



Space complexity results

A toolbox for designing P systems with active membranes

polynomial number of charges

several other simulations

Use of oracles introduces a hierarchy based on the nesting depth of 

the membrane structure

linear (and, now, 
𝑛

log 𝑛
) depth: PSPACE

depth 1: P#P

in the middle: hic sunt leones!

CMC 19 – Dresden – September 6th, 2018 33



The factorization problem

Given n = pq, where p and q are prime numbers, it is difficult to 

compute p (or q)

Let m = log2 n, then trying to divide by all numbers between 2 and 

𝑛 takes an exponential time:

Nobody knows whether a polynomial time algorithm exists

We have seen a brute-force parallel attack, by P systems

Is there a « better » parallel algorithm?

CMC 19 – Dresden – September 6th, 2018 34

)2()2()( 2/mm OOnO ==



The factorization problem

Example of instance:

CMC 19 – Dresden – September 6th, 2018 35

)2()2()( 2/mm OOnO ==

RSA-768 = 12301866845301177551304949583849627207728535695

95334792197322452151726400507263657518745202199

78646938995647494277406384592519255732630345373

15482685079170261221429134616704292143116022212

4047927473779408066535141959745985 6902143413



The factorization problem

Example of instance:

CMC 19 – Dresden – September 6th, 2018 36

)2()2()( 2/mm OOnO ==

RSA-768 = 12301866845301177551304949583849627207728535695

95334792197322452151726400507263657518745202199

78646938995647494277406384592519255732630345373

15482685079170261221429134616704292143116022212

4047927473779408066535141959745985 6902143413

= 33478071698956898786044169848212690817704794983

71376856891243138898288379387800228761471165253

1743087737814467999489

 36746043666799590428244633799627952632279158164

34308764267603228381573966651127923337341714339

6810270092798736308917



The factorization problem

Consider 𝜙 𝑛 = 𝑝 − 1 𝑞 − 1 (Euler’s totient function)

In general, 𝜙 𝑛 = 𝑥 ∈ ℕ ∶ 1 < 𝑥 ≤ 𝑛 and GCD 𝑥, 𝑛 = 1

If we know the factorization of 𝑛 then computing 𝜙 𝑛 is easy, 

otherwise it is difficult

we would break the cryptosystem RSA

we could factorize 𝑛:

𝜙 𝑛 = 𝑝 − 1 𝑞 − 1 = 𝑝𝑞 − 𝑝 + 𝑞 + 1

from where:

ቊ
𝑝𝑞 = 𝑛

𝑝 + 𝑞 = 𝑛 − 𝜙 𝑛 + 1

𝑝 and 𝑞 are the solutions of 𝑥2 − 𝑝 + 𝑞 𝑥 + 𝑝𝑞 = 0

CMC 19 – Dresden – September 6th, 2018 37



The factorization problem

So, computing 𝜙 𝑛 has the same difficulty as factorizing 𝑛

Question: do we know a parallel algorithm to compute

𝜙 𝑛 = 𝑥 ∈ ℕ ∶ 1 < 𝑥 ≤ 𝑛 and GCD 𝑥, 𝑛 = 1 ?

Answer: no, and the bad news are that GCD seems to be not 

parallelizable!

CMC 19 – Dresden – September 6th, 2018 38



Computational power vs Expressivity

Usually, Turing-completeness is proved by simulating Turing 

machines or register machines

Example: simulation of register machines by SN P systems

assume simulation of a deterministic register machine, 

computing functions ℕ → ℕ

This means that SN P systems can be used to compute any 

computable function

Exercise: design a SN P system that, given 𝑛 ∈ ℕ, computes and 

outputs 𝑛2

is the design process simple?

is it handy?

CMC 19 – Dresden – September 6th, 2018 39



A “high-level” programming language

for building P systems

Idea:

we may first write a program for a register machine, and then 

build the SN P system by composing ADD and SUB modules

❖ this substitution can be performed automatically

❖ it works for many universal models of P systems

The difficulty in writing the program may depend upon the function 

to be computed, hence we could:

write a program for a “high-level” programming language, 

which is then easily compiled to an equivalent program for a 

register machine

build the P system by composing ADD and SUB modules

CMC 19 – Dresden – September 6th, 2018 40



A “high-level” programming language

for building P systems

Proposal: make both translations automatically, that is:

The first compiler would be fixed, the others would depend upon the 

model of P systems considered

The output could be given in P-Lingua

To start with, the high-level language should be very easy

a possible candidate: the WHILE language

of course, the WHILE language is Turing-complete

CMC 19 – Dresden – September 6th, 2018 41

High-level

programs

Programs for

register machines

SN P systems
compiler

EN P systems

⋮



A “high-level” programming language

for building P systems

The WHILE language:

Variables xj, for jℕ, each containing a non-negative integer value

Assignment commands:

xk := 0 xk := xj + 1         xk := xj ∸1      (truncated decrement)

While commands:

while xk  0 do C

where C is an arbitrary command

Compound commands:

begin  C1;  C2;  …  Cm;  end (m > 0)

where C1;  C2;  …  Cm are arbitrary commands

A program is a compound command

CMC 19 – Dresden – September 6th, 2018 42



A “high-level” programming language

for building P systems

The WHILE language can be extended through macros of the kind

xi = Op(xj, xk)

For example, Op can be Sum, Product, TruncatedSum, 

IntegerDivision, Mod, CantorPairingFunction, …

Other natural extensions/alternatives:

using a more sophisticated/expressive language

❖programs would be easier to write, but on the other hand

❖ the compiler would be harder to write

compiling to more sophisticated/expressive low-level languages  

(RAM machines, appropriate assembly languages, …)

CMC 19 – Dresden – September 6th, 2018 43



A “high-level” programming language

for building P systems

However, in this way P systems are used in the sequential way

what about a concurrent programming language?

❖ Inspired from Occam?

what about distributed (and concurrent), possibly asynchronous, 

languages? 

❖SCOOP? Message-passing, it allows the creation of               

« contracts »

[C. Corrodi, A. Heußner, C.M. Poskitt: A Semantics Comparison  

Workbench for a Concurrent, Asynchronous, Distributed 

Programming Language. arxiv:1710.03928, October 2017]

CMC 19 – Dresden – September 6th, 2018 44



P systems and Cryptography

A topic deeply related with computational complexity: Cryptography

Some (provocative?) ideas:

use of P systems to implement cryptographic operations

(encryption, PRNGs, …)

even more: cryptographic protocols

even more: DApps (Decentralized Apps): see Ethereum

even more: computations on encrypted data. It has been done for 

Boolean circuits and for Turing machines

CMC 19 – Dresden – September 6th, 2018 45



Killer applications for P systems

We also need parallel, distributed, interesting problems

Is a problem parallelizable?

try to design a Boolean circuit; in which complexity class is the 

problem?

what kind of circuit? (Recall the PARITY example)

For example, threshold circuits seem to be related with 

monodirectional P systems with active membranes

However, a killer app would probably be a decentralized app (DApp)

unfortunately, I do not know any really interesting candidate 

problem / algorithm / protocol. Maybe some form of consensus 

protocol?

CMC 19 – Dresden – September 6th, 2018 46



CMC 19 – Dresden – September 6th, 2018 47

Last slide…


