| Greet | Motiv |  | Byz | Syb | Rules | Bonus |
|-------|-------|--|-----|-----|-------|-------|
|       |       |  |     |     |       |       |

### Actor-like cP Systems

#### Alec Henderson and Radu Nicolescu

#### - Application/Test : Byzantine Agreement -

Department of Computer Science University of Auckland, Auckland, New Zealand

> CMC Dresden, Germany 4-7 September 2018

| Greet | Motiv |  | Byz | Syb | Rules | Bonus |
|-------|-------|--|-----|-----|-------|-------|
|       |       |  |     |     |       |       |

Greetings

- 2 Motivation
- **3** cP Local Evolution Samples
- **4** cP Communication
- **5** The Byzantine Agreement
- **6** Sybil-like Attacks
- Ruleset

8 Unbounded non-determinism - fairness, beyond Turing?





- Kia ora! G'day!
- Good day!
- Dobryj dyen'!
- Guten Tag!
- Bonjour!
- Buon giorno!
- Buenos días!
- Bună ziua!



- Cellular organisation
  - Top cells organised in digraph networks tissue P systems
  - Top cells contain nested sub-cells cell-like P systems
- Data given as multisets
- Evolution by multiset rewriting rules potential parallelism
  - Extended with states, weak priority, promoters, inhibitors, ...
  - ... and communication primitives between top-cells



- Cellular organisation
  - Top cells organised in digraph networks tissue P systems
  - Top cells contain nested sub-cells cell-like P systems
- Data given as multisets
- Evolution by multiset rewriting rules potential parallelism
  - Extended with states, weak priority, promoters, inhibitors, ...
  - ... and communication primitives between top-cells



- Cellular organisation
  - Top cells organised in digraph networks tissue P systems
  - Top cells contain nested sub-cells cell-like P systems
- Data given as multisets
- Evolution by multiset rewriting rules potential parallelism
  - Extended with states, weak priority, promoters, inhibitors, ...
  - ... and communication primitives between top-cells



- Each top cell has
  - passive sub-cellular components (data only no own rules!)
  - organelles, vesicles, ...
  - high-level rules (that can directly work on subcells' contents)



| Greet    | Motiv |  | Byz | Syb | Rules | Bonus |
|----------|-------|--|-----|-----|-------|-------|
| Inspirat | tion  |  |     |     |       |       |

- Logic programming
  - subcells (aka complex symbols) ≈ Prolog-like first-order terms, recursively built from multisets of atoms and variables
- Functional and generic programming
- Actor model

| Greet    | Motiv |  | Byz | Syb | Rules | Bonus |
|----------|-------|--|-----|-----|-------|-------|
| Inspirat | ion   |  |     |     |       |       |

- Logic programming
  - subcells (aka complex symbols) ≈ Prolog-like first-order terms, recursively built from multisets of atoms and variables
- Functional and generic programming
- Actor model

| Greet    | Motiv |  | Byz | Syb | Rules | Bonus |
|----------|-------|--|-----|-----|-------|-------|
| Inspirat | tion  |  |     |     |       |       |

- Logic programming
  - subcells (aka complex symbols) ≈ Prolog-like first-order terms, recursively built from multisets of atoms and variables
- Functional and generic programming
- Actor model



- image processing and computer vision
  - stereo-matching, skeletonisation, segmentation
- graph theory
- high-level P systems programming
- numerical P systems
- NP-complete problems
- distributed algorithms
  - Byzantine agreement continued here



- Local evolution: one top cell and its subcells
- No communication between top cells
- Model for parallelism with shared memory



- $x = 0 \equiv x() \equiv x(\lambda)$
- $x = 1 \equiv x(1)$
- $x=2\equiv x(11)$
- $x = n \equiv x(1^n)$
- $x \leftarrow y + z \equiv$ 
  - $y(Y) z(Z) \rightarrow x(YZ)$  (destructive add)
  - $\rightarrow x(YZ) \mid y(Y) z(Z)$  (preserving add)
- $x \leq y \equiv | x(X) y(XY)$
- $x < y \equiv | x(X) y(XY1)$



- $x = 0 \equiv x() \equiv x(\lambda)$
- $x = 1 \equiv x(1)$
- $x=2\equiv x(11)$
- $x = n \equiv x(1^n)$
- $x \leftarrow y + z \equiv$ 
  - $y(Y) \ z(Z) \ \rightarrow \ x(YZ)$  (destructive add)
  - $\rightarrow x(YZ) \mid y(Y) z(Z)$  (preserving add)
- $x \le y \equiv | x(X) y(XY)$
- $x < y \equiv | x(X) y(XY1)$



- $x = 0 \equiv x() \equiv x(\lambda)$
- $x = 1 \equiv x(1)$
- $x=2\equiv x(11)$
- $x = n \equiv x(1^n)$
- $x \leftarrow y + z \equiv$ 
  - $y(Y) \ z(Z) \ 
    ightarrow \ x(YZ)$  (destructive add)
  - $\rightarrow x(YZ) \mid y(Y) z(Z)$  (preserving add)
- $x \leq y \equiv | x(X) y(XY)$
- $x < y \equiv | x(X) y(XY1)$



- $x = 0 \equiv x() \equiv x(\lambda)$
- $x = 1 \equiv x(1)$
- $x=2\equiv x(11)$
- $x = n \equiv x(1^n)$
- $x \leftarrow y + z \equiv$ 
  - $y(Y) \ z(Z) \ \rightarrow \ x(YZ)$  (destructive add)
  - $\rightarrow x(YZ) \mid y(Y) z(Z)$  (preserving add)
- $x \leq y \equiv | x(X) y(XY)$
- $x < y \equiv | x(X) y(XY1)$

## Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics

• Consider a multiset of 'a' numbers, such as:

 $a(1^5) a(1^3) a(1^7) \ldots$ 

• Min finding in two steps (regardless of the data cardinality)

$$S_1 \rightarrow_+ S'_1 b(X) \mid a(X)$$
  
$$S'_1 b(XY1) \rightarrow_+ S_2 \mid a(X)$$

- Rule (2): delete all *b*'s having values strictly higher than anyone *a*
- Result (non-destructive):

$$a(1^5)$$
  $a(1^3)$   $a(1^7)$  ...  
 $b(1^3)$ 



• Consider a multiset of 'a' numbers, such as:

 $a(1^5) a(1^3) a(1^7) \dots$ 

• Min finding in two steps (regardless of the data cardinality)

- Rule (2): delete all *b*'s having values strictly higher than anyone *a*
- Result (non-destructive):

$$a(1^5) a(1^3) a(1^7) \dots b(1^3)$$

## Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics

• Consider a multiset of 'a' numbers, such as:

 $a(1^5) a(1^3) a(1^7) \dots$ 

• Min finding in two steps (regardless of the data cardinality)

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline S_1 \rightarrow_+ S_1' & b(X) & \mid a(X) \\ S_1' & b(XY1) \rightarrow_+ S_2 & \mid a(X) \\ \hline \end{array}$$

1 2

- Rule (2): delete all *b*'s having values strictly higher than anyone *a*
- Result (non-destructive):

$$a(1^5) a(1^3) a(1^7) \dots b(1^3)$$

## Greet Motiv cP cP Byz Syb Rules Bonus Efficient summary statistics

• Consider a multiset of 'a' numbers, such as:

 $a(1^5) a(1^3) a(1^7) \dots$ 

• Min finding in two steps (regardless of the data cardinality)

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline S_1 \rightarrow_+ S_1' & b(X) & \mid a(X) \\ S_1' & b(XY1) \rightarrow_+ S_2 & \mid a(X) \\ \hline \end{array}$$

1 2

- Rule (2): delete all *b*'s having values strictly higher than anyone *a*
- Result (non-destructive):

$$a(1^5) a(1^3) a(1^7) \dots b(1^3)$$

## Greet Motiv cP cP Byz Syb Rules Bonus List x – with . as cons



- $x(.(u .(v .(w .())))) \equiv$
- x[u, v, w] (sugared notation)  $\equiv$
- $x[u \mid [v, w]]$  (sugared notation)



 $\begin{array}{ll} \rightarrow_1 & y[] & \mbox{creating empty list y} \\ a & y[Y] & \rightarrow_1 & y[a \mid Y] & \mbox{pushing atom a on list y} \\ a(X) & y[Y] & \rightarrow_1 & y[X \mid Y] & \mbox{pushing contents of a on list y} \\ y[X \mid Y] & \rightarrow_1 & b(X) & y[Y] & \mbox{popping the top of list y to contents of b} \end{array}$ 

## Greet Motiv cP cP Byz Syb Rules Bonus Associative arrays (mappings, dictionaries)

 $\mu$  – mapping,  $\kappa$  – key,  $\upsilon$  – value





- $1^3 \mapsto c \equiv$ 
  - $\mu(\kappa(1^3) v(c))$
- $\{1^3\mapsto c, 1^7\mapsto g\}\equiv$ 
  - $\mu(\kappa(1^3) v(c)) \quad \mu(\kappa(1^7) v(g))$
- Similarly: finite functions, relations, tables, trees, ...

## Greet Motiv cP cP Byz Syb Rules Bonus Associative arrays (mappings, dictionaries)

 $\mu$  – mapping,  $\kappa$  – key,  $\upsilon$  – value





- $1^3 \mapsto c \equiv$ 
  - $\mu(\kappa(1^3) v(c))$
- $\{1^3\mapsto c, 1^7\mapsto g\}\equiv$ 
  - $\mu(\kappa(1^3) v(c)) \quad \mu(\kappa(1^7) v(g))$
- Similarly: finite functions, relations, tables, trees, ...



#### Sender takes all decisions

 $a \ a \ 
ightarrow b!_1$  two a's are deleted and one b is sent over arc 1

• More emphatically: 
$$b!_1 \equiv !_1\{b\}$$

- Problem: receiving cell has no control: time, filter, consistency, ...
- In particular, the system is prone to Sybil attacks i.e. can be subverted by forging identities
  - Name inspired by the book Sybil, a case study of a person diagnosed with dissociative (multiple) identity disorder
- More generally, the network part was subsumed by local evolutions – modelling flaw



#### Sender takes all decisions

 $a \ a \ 
ightarrow b!_1$  two a's are deleted and one b is sent over arc 1

• More emphatically: 
$$b!_1 \equiv !_1\{b\}$$

- Problem: receiving cell has no control: time, filter, consistency, ...
- In particular, the system is prone to Sybil attacks i.e. can be subverted by forging identities
  - Name inspired by the book Sybil, a case study of a person diagnosed with dissociative (multiple) identity disorder
- More generally, the network part was subsumed by local evolutions – modelling flaw

# Greet Motiv cP cP Byz Syb Rules Bonus Previous cP messaging mechanism

#### Sender takes all decisions

a a  $\rightarrow$  b!<sub>1</sub> two a's are deleted and one b is sent over arc 1

• More emphatically: 
$$b!_1 \equiv !_1\{b\}$$

- Problem: receiving cell has no control: time, filter, consistency, ...
- In particular, the system is prone to Sybil attacks i.e. can be subverted by forging identities
  - Name inspired by the book Sybil, a case study of a person diagnosed with dissociative (multiple) identity disorder
- More generally, the network part was subsumed by local evolutions modelling flaw

# Greet Motiv cP cP Byz Syb Rules Bonus Previous cP messaging mechanism

#### Sender takes all decisions

a a  $\rightarrow b!_1$  two a's are deleted and one b is sent over arc 1

• More emphatically: 
$$b!_1 \equiv !_1\{b\}$$

- Problem: receiving cell has no control: time, filter, consistency, ...
- In particular, the system is prone to Sybil attacks i.e. can be subverted by forging identities
  - Name inspired by the book Sybil, a case study of a person diagnosed with dissociative (multiple) identity disorder
- More generally, the network part was subsumed by local evolutions – modelling flaw

# Greet Motiv cP cP Byz Syb Rules Bonus Previous cP messaging mechanism

### Sender takes all decisions

 $a a \rightarrow b!_1$  two a's are deleted and one b is sent over arc 1

• More emphatically: 
$$b!_1 \equiv !_1\{b\}$$

- Problem: receiving cell has no control: time, filter, consistency, ...
- In particular, the system is prone to Sybil attacks i.e. can be subverted by forging identities
  - Name inspired by the book Sybil, a case study of a person diagnosed with dissociative (multiple) identity disorder
- More generally, the network part was subsumed by local evolutions – modelling flaw



- Latency is zero
- Transport cost is zero
- Bandwidth is infinite
- The network is reliable
- The network is secure
- Topology doesn't change
- The network is homogeneous
- There is one administrator
- ...



- The Actor model is a model of message-based concurrent computation which treats "actors" as universal primitives
- In response to a message that it receives, an actor can
  - make local decisions
  - create more actors
  - send more messages
  - (change state) determine how to respond to the next message received
- There is no assumed sequence to the above actions
- In the (typical) asynchronous case, it could take an unbounded time to receive a sent message



- The Actor model is a model of message-based concurrent computation which treats "actors" as universal primitives
- In response to a message that it receives, an actor can
  - make local decisions
  - create more actors
  - send more messages
  - (change state) determine how to respond to the next message received
- There is no assumed sequence to the above actions
- In the (typical) asynchronous case, it could take an unbounded time to receive a sent message



- The Actor model is a model of message-based concurrent computation which treats "actors" as universal primitives
- In response to a message that it receives, an actor can
  - make local decisions
  - create more actors
  - send more messages
  - (change state) determine how to respond to the next message received
- There is no assumed sequence to the above actions
- In the (typical) asynchronous case, it could take an unbounded time to receive a sent message

# Greet Motiv cP cP Byz Syb Rules Bonus Typical Actor implementations use message "queues"



- The actor encapsulates an "inbox" message "queue" that supports multiple-writers and a single reader (the actor itself)
- Writers can send one-way messages to the actor by using the Post method and its variations
- Actors can receive messages using the Receive method and its variations (with optional timeouts)
- Actors can also scan through all their available messages using the Scan method and its variations

# Greet Motiv cP cP Byz Syb Rules Bonus Typical Actor implementations use message "queues"



- The actor encapsulates an "inbox" message "queue" that supports multiple-writers and a single reader (the actor itself)
- Writers can send one-way messages to the actor by using the Post method and its variations
- Actors can receive messages using the Receive method and its variations (with optional timeouts)
- Actors can also scan through all their available messages using the Scan method and its variations



- Multiple inboxes
- Supervision hierarchy
  - Supervisors delegate tasks to subordinates...
  - ... then receive and treat subordinates' failures
- Monitoring relationships
  - Each actor may watch any other actor for termination



- Multiple inboxes
- Supervision hierarchy
  - Supervisors delegate tasks to subordinates...
  - ... then receive and treat subordinates' failures
- Monitoring relationships
  - Each actor may watch any other actor for termination



- Multiple inboxes
- Supervision hierarchy
  - Supervisors delegate tasks to subordinates...
  - ... then receive and treat subordinates' failures
- Monitoring relationships
  - Each actor may watch any other actor for termination



- Exactly once message delivery
  - At most once
  - At least once
- FIFO messaging
  - Distributed algorithms should not rely on this assumption



- Exactly once message delivery
  - At most once
  - At least once
- FIFO messaging
  - Distributed algorithms should not rely on this assumption





- Receiver has an active role
- Receiving cell has one system provided message multiset for each incoming arc

 $b?_1 \ b \ 
ightarrow c$  can fire when one 'b' is in the message multiset 1







- Receiver has an active role
- Receiving cell has one system provided message multiset for each incoming arc

 $b?_1 \ b \ 
ightarrow c$  can fire when one 'b' is in the message multiset 1

• More emphatically: 
$$b?_1 \equiv ?_1\{b\}$$





- Receiving cell has full control: time, filter, consistency, ...
- In particular, if the communication arcs are secure and reliable, then the system is resilient to Sybil attacks – i.e. cannot be subverted by forging identities





- Receiving cell has full control: time, filter, consistency, ...
- In particular, if the communication arcs are secure and reliable, then the system is resilient to Sybil attacks – i.e. cannot be subverted by forging identities

## Greet Motiv cP cP Byz Syb Rules Bonus New cP messaging mechanism – CML inspired

- Message multisets can be implemented in a straightforward way, by automatically encapsulating incoming messages and tagging these with the id of the in-arc, e.g.  $\boxed{?_1(b)}$
- The same syntax may have a CML (Concurrent Meta Language) inspired semantics!

 $b?_1 \ b \ 
ightarrow c$  an fire when a b arrives over in-arc 1

- The sender could be blocked until the receiver "picks up" the message
- Work in progress note some similarities with symport/antiport systems

## Greet Motiv cP cP Byz Syb Rules Bonus New cP messaging mechanism – CML inspired

- Message multisets can be implemented in a straightforward way, by automatically encapsulating incoming messages and tagging these with the id of the in-arc, e.g.  $\boxed{?_1(b)}$
- The same syntax may have a CML (Concurrent Meta Language) inspired semantics!

 $b?_1 b \rightarrow c$  can fire when a b arrives over in-arc 1

- The sender could be blocked until the receiver "picks up" the message
- Work in progress note some similarities with symport/antiport systems



- Consensus in the presence of faults
  - Node faults
    - Stopping failures
    - Byzantine failures
  - Communication faults
- Models
  - Synchronous
  - Asynchronous



- Consensus in the presence of faults
  - Node faults
    - Stopping failures
    - Byzantine failures
  - Communication faults
- Models
  - Synchronous
  - Asynchronous



- Consensus in the presence of faults
  - Node faults
    - Stopping failures
    - Byzantine failures
  - Communication faults
- Models
  - Synchronous
  - Asynchronous



- Consensus in the presence of faults
  - Node faults
    - Stopping failures
    - Byzantine failures
  - Communication faults
- Models
  - Synchronous
  - Asynchronous



- Consensus in the presence of faults
  - Node faults
    - Stopping failures
    - Byzantine failures
  - Communication faults
- Models
  - Synchronous
  - Asynchronous





- N = 4 Byzantine armies, physically separated
- Generals start with their own initial decisions, 0 or 1
- They can communicate via N(N-1)/2 = 6 reliable channels
- They must reach a common decision
- Problem: among them there may be F Byzantine traitors
- Deterministic agreement between loyal generals possible iff
   N ≥ 3F + 1 and communications are reliable and synchronous

Pease, Shostak, Lamport 1980; Lamport, Shostak, Pease 1982; Fischer, Lynch, Paterson 1985





- N = 4 Byzantine armies, physically separated
- Generals start with their own initial decisions, 0 or 1
- They can communicate via N(N-1)/2 = 6 reliable channels
- They must reach a common decision
- Problem: among them there may be F Byzantine traitors
- Deterministic agreement between loyal generals possible iff
   N ≥ 3F + 1 and communications are reliable and synchronous

Pease, Shostak, Lamport 1980; Lamport, Shostak, Pease 1982; Fischer, Lynch, Paterson 1985





- N = 4 Byzantine armies, physically separated
- Generals start with their own initial decisions, 0 or 1
- They can communicate via N(N-1)/2 = 6 reliable channels
- They must reach a common decision
- Problem: among them there may be F Byzantine traitors
- Deterministic agreement between loyal generals possible iff  $N \ge 3F + 1$  and communications are reliable and synchronous

Pease, Shostak, Lamport 1980; Lamport, Shostak, Pease 1982; Fischer, Lynch, Paterson 1985

| Greet | Motiv     |        |      | Byz | Syb | Rules | Bonus |
|-------|-----------|--------|------|-----|-----|-------|-------|
| The F | Ryzantine | agreen | nent |     |     |       |       |

### The Byzantine agreement

| Process             | $\iota_1$                                    | $\iota_2$                        | $\iota_3$                     | $\iota_4$                          |
|---------------------|----------------------------------------------|----------------------------------|-------------------------------|------------------------------------|
| Initial<br>choice   | 0                                            | 0                                | 1                             | 1                                  |
| Faulty              | Yes                                          | No                               | No                            | No                                 |
| Round 1<br>messages | (1, <b>x</b> )                               | (2, 0)                           | (3, 1)                        | (4, 1)                             |
| Round 2<br>messages | (2.1, 0)<br>$(3.1, \mathbf{y})$<br>(4, 1, 1) | (1.2, 0)<br>(3.2, 1)<br>(4.2, 1) | (1.3,0)<br>(2.3,0)<br>(4.3,1) | $(1.4, 1) \\ (2.4, 0) \\ (3.4, 1)$ |
| Final<br>decision   | ?                                            | 0                                | 0                             | 0                                  |

Faulty process  $\iota_1$  sends out conflicting messages:

- x = 0, y = 1 to process  $\iota_2$
- *x* = 0, *y* = 0 to process *ι*<sub>3</sub>
- x = 1, y = 1 to process  $\iota_4$

Still, non-faulty processes do reach a common decision, 0 ( $v_0 = 0$ )

| Greet | Motiv     |        |      | Byz | Syb | Rules | Bonus |
|-------|-----------|--------|------|-----|-----|-------|-------|
| The F | Ruzantine | agreen | nent |     |     |       |       |



| Process             | $\iota_1$                                   | $\iota_2$                        | $\iota_3$                        | $\iota_4$                          |
|---------------------|---------------------------------------------|----------------------------------|----------------------------------|------------------------------------|
| Initial<br>choice   | 0                                           | 0                                | 1                                | 1                                  |
| Faulty              | Yes                                         | No                               | No                               | No                                 |
| Round 1<br>messages | (1, <b>x</b> )                              | (2, 0)                           | (3, 1)                           | (4, 1)                             |
| Round 2<br>messages | (2.1, 0)<br>$(3.1, \mathbf{y})$<br>(4.1, 1) | (1.2, 0)<br>(3.2, 1)<br>(4.2, 1) | (1.3, 0)<br>(2.3, 0)<br>(4.3, 1) | $(1.4, 1) \\ (2.4, 0) \\ (3.4, 1)$ |
| Final<br>decision   | ?                                           | 0                                | 0                                | 0                                  |

Faulty process  $\iota_1$  sends out conflicting messages:

- x = 0, y = 1 to process  $\iota_2$
- *x* = 0, *y* = 0 to process *ι*<sub>3</sub>
- x = 1, y = 1 to process  $\iota_4$

Still, non-faulty processes do reach a common decision, 0 ( $v_0 = 0$ )

Greet Motiv cP cP **Byz** Syb Rules Bonus

### EIG trees for non-faulty processes



| Process             | $\iota_1$                                   | $\iota_2$                        | $\iota_3$                       | $\iota_4$                          |
|---------------------|---------------------------------------------|----------------------------------|---------------------------------|------------------------------------|
| Initial<br>choice   | 0                                           | 0                                | 1                               | 1                                  |
| Faulty              | Yes                                         | No                               | No                              | No                                 |
| Round 1<br>messages | (1, <b>x</b> )                              | (2, 0)                           | (3, 1)                          | (4, 1)                             |
| Round 2<br>messages | (2.1, 0)<br>$(3.1, \mathbf{y})$<br>(4.1, 1) | (1.2, 0)<br>(3.2, 1)<br>(4.2, 1) | $(1.3,0) \\ (2.3,0) \\ (4.3,1)$ | $(1.4, 1) \\ (2.4, 0) \\ (3.4, 1)$ |
| Final<br>decision   | ?                                           | 0                                | 0                               | 0                                  |

•  $\alpha$  by top-down messaging

•  $L_1$ : (initial)  $\iota_3 \stackrel{(3,1)}{\rightarrow} \iota_2, \iota_3, \iota_4$ 

- $L_2$ : (relay)  $\iota_3 \stackrel{(4.3,1)}{\rightarrow} \iota_2, \iota_3, \iota_4$
- $\beta$  by bottom-up local voting
- common final decision, 0

Greet Motiv cP cP **Byz** Syb Rules Bonus

### EIG trees for non-faulty processes



| Process             | $\iota_1$                        | $\iota_2$                        | ι3                 | $\iota_4$                          |
|---------------------|----------------------------------|----------------------------------|--------------------|------------------------------------|
| Initial<br>choice   | 0                                | 0                                | 1                  | 1                                  |
| Faulty              | Yes                              | No                               | No                 | No                                 |
| Round 1<br>messages | (1, <b>x</b> )                   | (2, 0)                           | (3, 1)             | (4,1)                              |
| Round 2<br>messages | (2.1, 0)<br>(3.1, y)<br>(4.1, 1) | (1.2, 0)<br>(3.2, 1)<br>(4.2, 1) | (1.3,0)<br>(2.3,0) | $(1.4, 1) \\ (2.4, 0) \\ (3.4, 1)$ |
| Final<br>decision   | (4.1,1)<br>?                     | 0                                | (4.3, 1)<br>0      | 0                                  |

•  $\alpha$  by top-down messaging

• 
$$L_1$$
: (initial)  $\iota_3 \stackrel{(3,1)}{\rightarrow} \iota_2, \iota_3, \iota_4$ 

• 
$$L_2$$
: (relay)  $\iota_3 \stackrel{(4.3,1)}{\rightarrow} \iota_2, \iota_3, \iota_4$ 

•  $\beta$  by bottom-up local voting

• common final decision, 0

Greet Motiv cP cP **Byz** Syb Rules Bonus

### EIG trees for non-faulty processes



| Process             | $\iota_1$                       | $\iota_2$            | ι3                 | $\iota_4$                          |
|---------------------|---------------------------------|----------------------|--------------------|------------------------------------|
| Initial<br>choice   | 0                               | 0                    | 1                  | 1                                  |
| Faulty              | Yes                             | No                   | No                 | No                                 |
| Round 1<br>messages | (1, <b>x</b> )                  | (2, 0)               | (3, 1)             | (4,1)                              |
| Round 2<br>messages | (2.1, 0)<br>$(3.1, \mathbf{y})$ | (1.2, 0)<br>(3.2, 1) | (1.3,0)<br>(2.3,0) | $(1.4, 1) \\ (2.4, 0) \\ (3.4, 1)$ |
| Final<br>decision   | (4.1, 1)                        | (4.2, 1)             | (4.3, 1)           | 0                                  |

•  $\alpha$  by top-down messaging

• 
$$L_1$$
: (initial)  $\iota_3 \stackrel{(3,1)}{\rightarrow} \iota_2, \iota_3, \iota_4$ 

• 
$$L_2$$
: (relay)  $\iota_3 \stackrel{(4.3,1)}{\rightarrow} \iota_2, \iota_3, \iota_4$ 

- $\beta$  by bottom-up local voting
- common final decision, 0



# GreetMotivcPcPByzSybRulesAn earlier more traditional P solution (2010)

• Just two nodes - even more firewall cells



## Greet Motiv cP cP Byz Syb Rules Bonus Summary of complexity measures (where L = |(N+2)/3|)

| Measure                   | tP (2010)         | cP (2016) | This mod |
|---------------------------|-------------------|-----------|----------|
| Cells per process         | 3N+1(2N+1)        | N+1       | 1        |
| Atomic symbols            | $\mathcal{O}(N!)$ | 18        | 1.       |
| States                    | $\mathcal{O}(L)$  | 14        | Ę        |
| Rules                     | $\mathcal{O}(N!)$ | 23        | 1        |
| Ruleset size – Raw        | 2338              | 2218      | 14       |
| Ruleset size – Compressed | 624               | 591       | 52       |
| Raw/Compressed ratio      | 3.75              | 3.75      | 2.8      |
| Steps per top-down level  | 5                 | 4         | 2        |
| Steps per bottom-up level | 1                 | 3 (1)     | 1        |

Note: cP systems have fixed-size alphabets and rulesets (no uniform families...)

## Ruleset for sending messages (5 rules)

| $S_0$                 | $\rightarrow_1$ | $S_1 \ \ell(0) \ \theta(\ell(0) \ \pi[] \ \rho() \ \alpha(V)) \\    \ \bar{\alpha}(V)$                                                                                                          |
|-----------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $S_1$                 | $\rightarrow_1$ | $S_3 \mid\mid ar{\ell}(L) \mid\mid \ell(L)$                                                                                                                                                     |
| <i>S</i> <sub>1</sub> | $\rightarrow_+$ | $S_{2} !_{\forall} \{ \theta'(\ell(L1) \ \pi[X P] \ \alpha(V)) \}$<br>$\mid\mid \bar{\mu}(X) \mid\mid \ell(L)$<br>$\mid\mid \theta(\ell(L) \ \pi[P] \ \alpha(V) \ \rho(Z))$<br>$\neg (Z = XQ')$ |
| <i>S</i> <sub>1</sub> | $\rightarrow_+$ | $S_2 \theta(\ell(L1) \pi[X P] \alpha(V))$ $\parallel \ell(L) \parallel \overline{\pi}[X] \parallel \overline{v}_0(V)$ $\parallel \theta(\ell(L) \pi[P] \alpha(_{-}) \rho(Z))$ $\neg (Z = XQ')$  |
| $S_1 \ell(L)$         | $\rightarrow_1$ | $S_2 \ell(L1)$                                                                                                                                                                                  |

Rules

Ruleset for receiving messages (2 rules)

Rules

### Ruleset for evaluating the EIG tree (5 rules)

| $S_3 \ell() \theta(\ell() \pi[] \alpha(V))$                                                  | $\rightarrow_1$ | $S_4 \omega(V)$                                               |
|----------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------|
| $S_3 \ \theta(\ell(L1) \ \pi[\_ P] \ \alpha(1)) \\ \theta(\ell(L1) \ \pi[\_ P] \ \alpha(0))$ | $\rightarrow_+$ | S <sub>3</sub><br>   ℓ(L1)                                    |
| $S_3 \theta(\ell(L1) \pi[\_ P] \alpha(X)) \\ \theta(\ell(L) \pi[P] \alpha(\_))$              | $\rightarrow_+$ | $S_3 \ \theta(\ell(L) \ \pi[P] \ \alpha(X)) \\    \ \ell(L1)$ |
| $S_3 \ \theta(\ell(L1))$                                                                     | $\rightarrow_+$ | S <sub>3</sub><br>   ℓ(L1)                                    |
| $S_3 \ell(L1)$                                                                               | $\rightarrow_1$ | $S_3 \ell(L)$                                                 |

Rules



- Thank you for your attention!
- Questions and feedback welcome!

# Greet Motiv CP CP Byz Syb Rules Bonus Unbounded non-determinism – fairness beyond Turing?

- A terminating asynchronous non-deterministic system that can generate any number!
- The counter actor cell

$$S_{0} \longrightarrow_{I} S_{0} !_{0} \{1\} \iota() \neg \iota(X) \qquad (0)$$
  

$$S_{0} ?_{0} \{1\} \iota(X) \longrightarrow_{I} S_{0} !_{0} \{1\} \iota(X1) \qquad (1)$$
  

$$S_{0} ?_{1} \{1\} \iota(X) \longrightarrow_{I} S_{1} !_{1} \{X\} \qquad (2)$$

• The main actor cell

## Greet Motiv CP CP Byz Syb Rules Bonus Unbounded non-determinism – fairness beyond Turing?

- A terminating asynchronous non-deterministic system that can generate any number!
- The counter actor cell

• The main actor cell

$$\begin{array}{cccccccc} S_0 & \to_1 & S_1 & !_1 \{1\} & (0) \\ S_1 & ?_1 \{X\} & \to_1 & S_2 & \dots & (1) \end{array}$$

## Greet Motiv CP CP Byz Syb Rules Bonus Unbounded non-determinism – fairness beyond Turing?

- A terminating asynchronous non-deterministic system that can generate any number!
- The counter actor cell

• The main actor cell