Actor-like cP Systems

Alec Henderson and Radu Nicolescu

— Application/Test : Byzantine Agreement —

Department of Computer Science
University of Auckland, Auckland, New Zealand

CMC
Dresden, Germany
4-7 September 2018

@ Greetings

® Motivation

© cP Local Evolution Samples
® cP Communication

©® The Byzantine Agreement
@ Sybil-like Attacks

@ Ruleset

® Unbounded non-determinism — fairness, beyond Turing?

Greet
Kia ora

e Kia ora! G'day!
e Good day!

e Dobryj dyen'!
e Guten Tag!

e Bonjour!

e Buon giorno!

e Buenos dias!

e Buna ziual

Motiv

Basic features shared by P and cP systems

e Cellular organisation

e Top cells organised in digraph networks — tissue P systems

e Top cells contain nested sub-cells — cell-like P systems

Motiv

Basic features shared by P and cP systems

e Cellular organisation

e Top cells organised in digraph networks — tissue P systems

e Top cells contain nested sub-cells — cell-like P systems

e Data given as multisets

Motiv

Basic features shared by P and cP systems

e Cellular organisation
e Top cells organised in digraph networks — tissue P systems
e Top cells contain nested sub-cells — cell-like P systems

e Data given as multisets

e Evolution by multiset rewriting rules — potential parallelism

e Extended with states, weak priority, promoters, inhibitors, ...

e ... and communication primitives between top-cells

Motiv

Bird's eye view — digraph of top level cells

e Each top cell has
e passive sub-cellular components (data only — no own rules!)
e organelles, vesicles, ...

e high-level rules (that can directly work on subcells' contents)

Motiv

Inspiration

e Logic programming

e subcells (aka complex symbols) ~ Prolog-like first-order terms,
recursively built from multisets of atoms and variables

6 /34

Motiv

Inspiration

e Logic programming

e subcells (aka complex symbols) ~ Prolog-like first-order terms,
recursively built from multisets of atoms and variables

e Functional and generic programming

6 /34

Motiv

Inspiration

e Logic programming

e subcells (aka complex symbols) ~ Prolog-like first-order terms,
recursively built from multisets of atoms and variables

e Functional and generic programming

e Actor model

6 /34

Motiv

Previous work — P systems with complex objects, cP

e image processing and computer vision

e stereo-matching, skeletonisation, segmentation

e graph theory

e high-level P systems programming
e numerical P systems

e NP-complete problems

e distributed algorithms

e Byzantine agreement — continued here

cP

cP Local Evolution Samples

e Local evolution: one top cell and its subcells
e No communication between top cells

e Model for parallelism with shared memory

Natural numbers

Ad-hoc convention: 1 — unary digit

e x=0=x() =x())
e x=1=x(1)
o x =2 = x(11)

e x=n=x(1")

Natural numbers

Ad-hoc convention: 1 — unary digit

e x=0=x() =x())
e x=1=x(1)
o x =2 = x(11)

e x=n=x(1")
* X< y+z=

e y(Y) z(Z) — x(YZ) (destructive add)
o — x(YZ) | y(Y) z(Z) (preserving add)

Natural numbers

Ad-hoc convention: 1 — unary digit

e x=0=x() =x())
e x=1=x(1)
o x =2 = x(11)

x=n= x(1")
* X< y+z=

e y(Y) z(Z) — x(YZ) (destructive add)
o — x(YZ) | y(Y) z(Z) (preserving add)

x <y =] x(X) y(XY)

Natural numbers

Ad-hoc convention: 1 — unary digit

e x=0=x() =x())
e x=1=x(1)
o x =2 = x(11)

x=n= x(1")
* X< y+z=

e y(Y) z(Z) — x(YZ) (destructive add)
o — x(YZ) | y(Y) z(Z) (preserving add)

x <y =] x(X) y(XY)

x <y =] x(X) y(XY1I)

cP

Efficient summary statistics

e Consider a multiset of ‘a’ numbers, such as:

a(1%) a(1*) a(1")

10/34

cP

Efficient summary statistics

e Consider a multiset of ‘a’ numbers, such as:

a(1%) a(1*) a(1")

e Min finding in two steps (regardless of the data cardinality)

LS oy S (X)) | a(x)
2| Sb(XYD) =y S | a(X)

10/34

cP

Efficient summary statistics

e Consider a multiset of ‘a’ numbers, such as:

a(1%) a(1*) a(1")

e Min finding in two steps (regardless of the data cardinality)

LS oy S (X)) | a(x)
2| Sb(XYD) =y S | a(X)

e Rule (2): delete all b's having values strictly higher than
anyone a

10/34

cP

Efficient summary statistics

e Consider a multiset of ‘a’ numbers, such as:

a(1%) a(1*) a(1")

e Min finding in two steps (regardless of the data cardinality)

LS oy S (X)) | a(x)
2| Sb(XYD) =y S | a(X)

e Rule (2): delete all b's having values strictly higher than
anyone a
e Result (non-destructive):

a(1%) a(1?) a(1")
b(1%)

10/34

cP

List x — with . as cons

o x((u (v .(w.()))

U e x[u, v, w] (sugared notation) =
e x[u | [v,w]] (sugared notation)

(%

w

11 /34

List — basic ops

—1 y[] creating empty list y
aylY] —1 ylalY] pushing atom a on list y
a(X) y[Y] —1 yIX|Y] pushing contents of a on list y

y[X1Y] =1 b(X) y[Y] popping the top of list y to contents of b

12 /34

cP

Associative arrays (mappings, dictionaries)

1 — mapping, k — key, v — value

e Bsc=

0

K U o u(r(I*) v(c))

& c e (B, 1" g} =
W o w(r()o(e)) u(r(1")v(g))
K v

13 /34

cP

Associative arrays (mappings, dictionaries)

1 — mapping, k — key, v — value
e Bisc=

T
K v o u(r(1%) v(c))
13 & e (B, 1" g} =

o w(r(P)v(c)) pu(s(1")v(g))

JE—
K v e Similarly: finite functions, relations,
7 tables, trees, ...
1" g

13 /34

cP

Previous cP messaging mechanism

e Sender takes all decisions

aa — by

two a’s are deleted and one b is sent over arc 1

14 /34

cP

Previous cP messaging mechanism

e Sender takes all decisions

aa — bl two a’s are deleted and one b is sent over arc 1

e More emphatically: | bly = !1{b}

14 /34

cP

Previous cP messaging mechanism

e Sender takes all decisions

aa — by

two a’s are deleted and one b is sent over arc 1

e More emphatically: | bly = !1{b}

e Problem: receiving cell has no control: time, filter,

consistency, ...

14 /34

cP

Previous cP messaging mechanism

e Sender takes all decisions

aa — bl two a’s are deleted and one b is sent over arc 1

e More emphatically: | bly = !1{b}

e Problem: receiving cell has no control: time, filter,
consistency, ...

e In particular, the system is prone to Sybil attacks —i.e. can be
subverted by forging identities

e Name inspired by the book Sybil, a case study of a person
diagnosed with dissociative (multiple) identity disorder

14 /34

cP

Previous cP messaging mechanism

e Sender takes all decisions

aa — bl two a’s are deleted and one b is sent over arc 1

e More emphatically: | bly = !1{b}

e Problem: receiving cell has no control: time, filter,
consistency, ...

e In particular, the system is prone to Sybil attacks —i.e. can be
subverted by forging identities

e Name inspired by the book Sybil, a case study of a person
diagnosed with dissociative (multiple) identity disorder

e More generally, the network part was subsumed by local
evolutions — modelling flaw

14 /34

cP

Fallacies of distributed computing — L Peter Deutsch

e Latency is zero

e Transport cost is zero

e Bandwidth is infinite

e The network is reliable

e The network is secure

e Topology doesn't change

e The network is homogeneous

e There is one administrator

15 /34

Actor model

e The Actor model is a model of message-based concurrent
computation which treats “actors” as universal primitives

16 /34

Actor model

e The Actor model is a model of message-based concurrent
computation which treats “actors” as universal primitives

e In response to a message that it receives, an actor can

make local decisions
e create more actors
e send more messages

(change state) determine how to respond to the next message
received

e There is no assumed sequence to the above actions

16 /34

Actor model

e The Actor model is a model of message-based concurrent
computation which treats “actors” as universal primitives

e In response to a message that it receives, an actor can

make local decisions
e create more actors
e send more messages

(change state) determine how to respond to the next message
received

e There is no assumed sequence to the above actions

e In the (typical) asynchronous case, it could take an
unbounded time to receive a sent message

16 /34

cP

Typical Actor implementations use message “queues”

e The actor encapsulates an “inbox” message “queue” that
supports multiple-writers and a single reader (the actor itself)

o Writers can send one-way messages to the actor by using the
Post method and its variations

17 /34

cP

Typical Actor implementations use message “queues”

e The actor encapsulates an “inbox” message “queue” that
supports multiple-writers and a single reader (the actor itself)

o Writers can send one-way messages to the actor by using the
Post method and its variations

e Actors can receive messages using the Receive method and its
variations (with optional timeouts)

e Actors can also scan through all their available messages using

the Scan method and its variations .

Typical Actor extensions

e Multiple inboxes

18 /34

Typical Actor extensions

e Multiple inboxes
e Supervision hierarchy

e Supervisors delegate tasks to subordinates...

e ... then receive and treat subordinates’ failures

18 /34

Typical Actor extensions

e Multiple inboxes
e Supervision hierarchy

e Supervisors delegate tasks to subordinates...

e ... then receive and treat subordinates’ failures

e Monitoring relationships

e Each actor may watch any other actor for termination

18 /34

cP

Actor systems — hard practical problems

e Exactly once message delivery

e At most once

e At least once

19/34

cP

Actor systems — hard practical problems

e Exactly once message delivery

e At most once

e At least once

e FIFO messaging

e Distributed algorithms should not rely on this assumption

19/34

cP

New cP messaging mechanism — Actor inspired

e Receiver has an active role

e Receiving cell has one system provided message multiset for
each incoming arc

b?y b — ¢ can fire when one ‘b’ is in the message multiset 1

20 /34

cP

New cP messaging mechanism — Actor inspired

e Receiver has an active role

e Receiving cell has one system provided message multiset for
each incoming arc

b?y b — ¢ can fire when one ‘b’ is in the message multiset 1

e More emphatically: | b?; = 7:1{b}

20 /34

cP

New cP messaging mechanism — Actor inspired

e Receiving cell has full control: time, filter, consistency, ...

21/34

cP

New cP messaging mechanism — Actor inspired

e Receiving cell has full control: time, filter, consistency, ...

e In particular, if the communication arcs are secure and
reliable, then the system is resilient to Sybil attacks — i.e.
cannot be subverted by forging identities

21/34

cP

New cP messaging mechanism — CML inspired

e Message multisets can be implemented in a straightforward
way, by automatically encapsulating incoming messages and

tagging these with the id of the in-arc, e.g.

e The same syntax may have a CML (Concurrent Meta
Language) inspired semantics!

‘ b1 b — ¢ can fire when a b arrives over in-arc 1

cP

New cP messaging mechanism — CML inspired

e Message multisets can be implemented in a straightforward
way, by automatically encapsulating incoming messages and

tagging these with the id of the in-arc, e.g.

e The same syntax may have a CML (Concurrent Meta
Language) inspired semantics!

‘ b1 b — ¢ can fire when a b arrives over in-arc 1

e The sender could be blocked until the receiver “picks up” the
message

e Work in progress — note some similarities with
symport/antiport systems

Consensus problems

e Consensus in the presence of faults
e Node faults

e Stopping failures

23 /34

Consensus problems

e Consensus in the presence of faults
e Node faults

e Stopping failures

e Byzantine failures

23 /34

Consensus problems

e Consensus in the presence of faults
e Node faults

e Stopping failures

e Byzantine failures

e Communication faults

23 /34

Consensus problems

e Consensus in the presence of faults
e Node faults

e Stopping failures

e Byzantine failures

e Communication faults

e Models

e Synchronous

23 /34

Consensus problems

e Consensus in the presence of faults
e Node faults

e Stopping failures

e Byzantine failures

e Communication faults

e Models
e Synchronous

e Asynchronous

23 /34

The Byzantine agreement

® @ | https;//www.google.it/search?q=byzantine+army+picture&client=firefox-b&tbm=isch&im € Q byzantine army picture
P goog

N = 4 Byzantine armies, physically separated

Generals start with their own initial decisions, 0 or 1

They can communicate via N(N — 1)/2 = 6 reliable channels
They must reach a common decision

24 /34

The Byzantine agreement

® @ | https;//www.google.it/search?q=byzantine+army+picture&client=firefox-b&tbm=isch&im € Q byzantine army picture

N = 4 Byzantine armies, physically separated

Generals start with their own initial decisions, 0 or 1

They can communicate via N(N — 1)/2 = 6 reliable channels
They must reach a common decision

Problem: among them there may be F Byzantine traitors

24 /34

The Byzantine agreement

® @ | https;//www.google.it/search?q=byzantine+army+picture&client=firefox-b&tbm=isch&im € Q byzantine army picture
P goog

e N = 4 Byzantine armies, physically separated
e Generals start with their own initial decisions, 0 or 1
e They can communicate via N(N — 1)/2 = 6 reliable channels
e They must reach a common decision
e Problem: among them there may be F Byzantine traitors
e Deterministic agreement between loyal generals possible iff
N > 3F 4+ 1 and communications are reliable and synchronous

Pease, Shostak, Lamport 1980; Lamport, Shostak, Pease 1982; Fischer, Lynch, Paterson 1985
24 /34

The Byzantine agreement

Process I o i M
Init.ial 0 0))
choice
Faulty Yes No No No

Round 1

messages (1, x) (2,0) (3,1) (4,1)

Round 2 (1.2,0) (1.3,0) (1.4,1)

messages | (2.1,0) (2.3,0) (2.4,0)
(3.1,y) | (3.2,1) (3.4,1)
(41,1 | (421) | (431

... Final y 0 0 .

decision

Faulty process ¢1 sends out conflicting messages:
e x =0,y =1 to process i
e x =0,y =0 to process 3
e x=1,y =1 to process (4

25 /34

The Byzantine agreement

Process I o i M
Init.ial 0 0))
choice
Faulty Yes No No No

Round 1

messages (1, x) (2,0) (3,1) (4,1)

Round 2 (1.2,0) (1.3,0) (1.4,1)

messages | (2.1,0) (2.3,0) (2.4,0)
(3.1,y) | (3:2,1) (3.4,1)
(4.1,1) | (42,1) | (43,1)

1?1.11&1 > 0 0 .

decision

Faulty process ¢1 sends out conflicting messages:
e x =0,y =1 to process i
e x =0,y =0 to process 3
e x=1,y =1 to process (4

Still, non-faulty processes do reach a common decision, 0 (vp = 0)

25 /34

53%4

EIG trees for non-faulty processes

Process
Init.ial 0 0 1 1
choice
Faulty Yes No No No
Round 1
messages L %) (2,0) (3,1) (4,1)
Round 2 (1.2,0) | (1.3,0) | (1.4,1)
messages | (2.1,0) 2.3,0) 2.4,0
31y | 321 (34,1)
(4.1,1) | (42,1) | (43,1)
El}lal ? 0 0 0
decision

e « by top-down messaging

... 3,1
e Li: (initial) ¢3 (—>) 12,13, L4

26 /34

53%4

EIG trees for non-faulty processes

Process
Init.ial 0 0 1 1
choice
Faulty Yes No No No
Round 1
messages L %) (2,0) (3,1) (4,1)
Round 2 (1.2,0) | (1.3,0) | (1.4,1)
messages | (2.1,0) 2.3,0) 2.4,0
31y | 321 (34,1)
(4.1,1) | (42,1) | (43,1)
El}lal ? 0 0 0
decision

e « by top-down messaging

... 3,1
e Li: (initial) ¢3 (—>) 12,13, L4

43,1
o Ly: [(relay)| ¢3 (=) 12,13, L4

26 /34

53%4

EIG trees for non-faulty processes

Process
Init.ial 0 0 1 1
choice
Faulty Yes No No No
Round 1
| (12 | @0 | @y | @
Round 2 (1.2,0) | (1.3,0) | (1.4,1)
messages | (2.1,0) (23,0 2.4,0
B1,y) | (32.1) (34,1)
(4.1,1) (4.2,1 (4.3,1)
El}lal 9 0 0 0
decision

e « by top-down messaging

o 3,1
Li: (initial) ¢3 (—>) 12,13, L4

43,1
Ly: [(relay)| ¢3 (=) 12,13, L4

[by bottom-up local voting

e common final decision, 0
26 /34

Syb

Previous cP solution — without Actor features (2016)

Firewall cells to protect:

e Against very badly
formed messages

e Against wrongly
timed messages

e Against Sybil-like
attacks

Note: firewalls slow

0
@ down the evolution, 5 or
V 4 times

27 /34

Syb

An earlier more traditional P solution (2010)

e Just two nodes — even more firewall cells

28 /34

Syb

Summary of complexity measures (where L = | (N +2)/3])

Measure tP (2010) cP (2016) | This mod
Cells per process 3N+1 (2N +1) N+1]
Atomic symbols O(NY) 18 1
States O(L) 14 F
Rules O(NY) 23 1
Ruleset size — Raw 2338 2218 14
Ruleset size — Compressed 624 591 52
Raw/Compressed ratio 3.75 3.75 2.
Steps per top-down level 5 4 p
Steps per bottom-up level 1 3 (1)]

Note: cP systems have fixed-size alphabets and rulesets (no

uniform families...)

29 /34

Ruleset for sending messages (5 rules)

So

S

S

S

Sy 6(L)

—1

51 £(0) 0(£(0) 7[] p() a(V))
la(v)

Ss || €(L) [€(L)

So A0 (¢(L1) w[X[P] a(V))}
[7 (X) 1] €(L)

1 0(¢(L) 7[P] a(V) p(2))
-(Z=XQ))

Sz 0(((L1) ©[X|P] (V)
(L) || 7[X] [vo(V)

|1 0(¢(L) 7[P] a(-) p(Z))
-(Z=XQ))

S, ¢(L1)

30/34

Ruleset for receiving messages (2 rules)

S W AO(ULL) 7[YIPLa(V))} =+ Sy 6(A(L) 7[YIP] p(YQ) a(V)
0(4(L1) 7[Y|P] a(.) (UL) [P] p(Q) o))

S2 0((L) 7[X|P] () -+ 5 ?(f(L) m[X[P] a(V))

31/34

)
53.4() 6(¢() w[] a(V)

o(1)
LI) w[|P]
(L 1) a1 a(0)

)
aaanaiynX)
iauﬂma,

S5 0(¢(L1).)

S ((LI)

—1

—+

—+

I14(L1)

S5 0(¢(L) 7[P] a(X))
Il €(L1)

ﬁ3€(L1)

S5 ((L)

32/34

Thanks

. Thank you for your attention!

. Questions and feedback welcome!

33/34

Unbounded non-determinism — fairness beyond Turing?

e A terminating asynchronous non-deterministic system that
can generate any number!

34 /34

Unbounded non-determinism — fairness beyond Turing?

e A terminating asynchronous non-deterministic system that
can generate any number!

e The counter actor cell

So =1 So lo{1} () - «X) (0)
50 ?0{1} L(X) —1 50 I0{1} L(X.Z) (1)
S() ?1{1} L(X) —1 51 Il{X} (2)

34 /34

Unbounded non-determinism — fairness beyond Turing?

e A terminating asynchronous non-deterministic system that
can generate any number!

e The counter actor cell

So =1 So lo{1} () - «X) (0)
50 ?0{1} L(X) —1 50 I0{1} L(X.Z (1)
S() ?1{1} L(X) —1 51 Il{X} (2)

e The main actor cell

So =1 S5 Il{l} (0)
51 ?1{X} —1 52 (1)

34 /34

	Greetings
	Motivation
	cP Local Evolution Samples
	cP Communication
	The Byzantine Agreement
	Sybil-like Attacks
	Ruleset
	Unbounded non-determinism – fairness, beyond Turing?

