

On Small Universality of Spiking Neural P System with Multiple Channels

Xihua University, Chengdu, P.R. China

Xiaoxiao Song*, Hong Peng, Jun Wang, Guimin Ning,

Tao Wang, Zhang Sun, Fan Yang

19th International Conference on Membrane Computing

4-7 September 2018, Dresden (Germany)

CMC19-Dresden-Germany

4-7 September 2018

Outline

- Motivation
- SN P Systems with Multiple Channels
- Small Universal Computing with Standard Spiking Rules
- Small Universal Computing with Extended Spiking Rules
- Conclusion and Future Works

Motivation

- The assumption is based on such a neurobiological fact: in the chemical synapse transmitting, there are multiple ion channels in a synapse^[1].
- SN P systems with multiple channels (SNP-MC systems).

[1] Nicholls, J., Martin, A., Fuchs, P., Brown, D., Diamond, M., & Weisblat, D. (2012). *From neuron to brain*. (5th ed.). Sinuer Assocites.

SN P Systems with Multiple Channels^[2]

$$\Pi = (O, L, \sigma_1, \sigma_2, ..., \sigma_m, syn, out)$$

- $O = \{a\}$ is the singleton alphabet;
- $L = \{1, 2, ..., N\}$ is the alphabet of channel labels;
- σ₁, σ₂,..., σ_m are neurons of the form σ_i = (n_i, R_i)
 n_i ≥ 0 is the initial number of spikes;

[2] H. Peng, J. Yang, J. Wang, T. Wang, Z. Sun, X. Song, X. Lou, X. Huang, Spiking neural P systems with multiple channels, *Neural Network*, 95 (2017) 66-71.

SN P Systems with Multiple Channels

- $syn = \{(i, j, l) \subseteq \{1, 2, ..., m\} \times \{1, 2, ..., m\} \times L\}$ with
 - $(i, j, l) \notin syn \text{ for } \forall 1 \leq i \leq m \text{ and } \forall l \in L;$
- $out \in \{1, 2, ..., m\}$ indicates the output neuron.

Examples

A cell-like SN P System

An SNP-MC system

d

Universality Results of SNP-MC Systems

$$N_2 SNP_*^2 = NRE$$

$$N_{acc}SNP_*^2 = NRE$$

• It is proved that SNP-MC systems can generate or accept any set of Turing computable numbers.

On Small Universality of SNP-MC Systems

The framework of the small universal SNP-MC system

4-7 September 2018

INPUT

西華大學

XIHUA UNIVERSITY

 $l_i:(ADD(r),l_j)$

西華大學

XIHUA UNIVERSITY

 $l_i:(SUB(r),l_j,l_k)$

西華大學

XIHUA UNIVERSITY

OUTPUT

- 9 neurons for 9 registers
- 25 neurons for 25 labels
- 2 auxiliary neurons in each ADD module, 20 in total
- 1 auxiliary neurons in each SUB module, 14 in total
- 3 neurons in INPUT module

• The constructed SNP-MC system using standard spiking rules uses 71 neurons.

 $l_{17}:(ADD(2), l_{21}), l_{21}(ADD(3), l_{18})$

西華大學

 l_{11} :(SUB(5), l_{12} , l_{13}), l_{13} (SUB(2), l_{18} , l_{19})

西華大學

A module simulating two SUB instructions with $r_1 \neq r_2$

• Instructions l_0 , l_3 , l_4 , l_6 , l_{10} , l_{15} and l_{19} , which address registers 1,5,6,7,4,3 and 0, can share a common neuron.

西海大学

A module simulating instructions l_{11} and l_{13} with other instruction with $r \neq 2$ and $r \neq 5$

• Instructions *l*₈, *l*₁₁, *l*₁₃, *l*₁₈ and *l*₂₂, which address registers 6,5,2,4 and 0, can share one common neuron.

万年大学

 The constructed SNP-MC system using standard spiking rules is decremented from 71 to 57 neurons.

• The constructed SNP-MC system using extended spiking rules uses 39 neurons.

CMC19-Dresden-Germany

百萬

Conclusion and Future Works

- Investigated the problem of small universality of SNP-MC in computing Turing computable function.
- SNP-MC system in computing Turing computable function:
 - Standard spiking rules: 57 neurons
 - Extended spiking rules: 39 neurons

Conclusion and Future Works

• Integrate other strategies and models in SNP-MC systems, such as exhaustive use of rules, white hole neurons, homogeneous neurons, request rules, asynchronous mode, local synchronous mode, sequential mode...

A

Thank you for your attention!

CMC19-Dresden-Germany

4-7 September 2018