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Motivation - P Systems Testing

Why Testing?
Testing is finding out how well something works.

Under certain conditions, one needs to ensure that the
implementation of a system conforms to its specification.

Why P system testing?
Membrane computing: very fast growing field

Rapid development of many tools and P system simulators

This issue raises the problem of testing all these implementations
of P systems.

The models are complex: non-deterministic, parallel, can have
polarizations (charges), transformation - communication rules,
membrane creation/division etc.
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Motivation - P Systems Testing

Previous approaches
Finite state based testing of P systems

Mutation-based testing of P systems (Kripe structure)

Testing non-deterministic stream X-machine models and P
system

Assessing the fault-detection efficiency of previous techniques –
mutation testing!

Automating P system test generation

Test Generation for P Systems using model checking
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Testing Identifiable kP systems

We present a testing approach for kP systems that ensure that
the implementations of Identifiable kP Systems conform with
their specifications.

based on the X-machine method
having as core concept the identifiability of multisets of rules.
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Outcomes of the testing method

For any finite set of computation steps one can get the
following:

for any initial multiset & any two configurations one can get the
unique sequence of multisets of rules used to get from one
configuration to the other one (the sequence is given by the
state cover and uniqueness by identifiability) & each multiset in
the sequence is minimal

any configuration is uniquely identified by a multiset of rules
applied to it
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Finite Cover Automata

Definition
A finite automaton is a tuple A = (V ,Q, q0,F , h), where:

V is the finite input alphabet;

Q is the finite set of states;

q0 ∈ Q is the initial state;

F ⊆ Q is the set of final states;

h : Q × V → Q is the next-state function.

Definition

Let A = (V ,Q, q0,F , h) be a FA, U ⊆ V ∗ a finite language and l the
length of the longest sequence(s) in U . Then A is called a
deterministic finite cover automaton (DFCA) of U if LA ∩ V [l ] = U .
A minimal DFCA - having the least number of states.
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Test Suite Definition

Let A be a minimal DFCA for LA.
The testing method needs two sets of input sequences, S and W :

Definition
S ⊆ V ∗ is called a proper state cover of A if for every state q of A
there exists s ∈ S such that h(q0, s) = q and |s| = level(q).

Definition
W ⊆ V ∗ is called a strong characterisation set of A if for every two
states q1 and q2 of A and every j ≥ 0, if q1 and q2 are
V [i ]-distinguishable then q1 and q2 are (W ∩ V [i ])-distinguishable.

Test Suite
Yk = SV [k + 1](W ∪ {λ}) ∩ V [l ] \ {λ}
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X machines Testing

Definition ( X machines)

An X-machine (XM) is a tuple Z = (Q,X ,Φ,H , q0, x0) where:

Q is a finite set of states;

X is the (possible infinite) data set;

Φ is a finite set of distinct processing functions; a processing
function is a non-empty (partial) function of type X → X ;

H is the (partial) next-state function, H : Q × Φ→ Q;

q0 ∈ Q is the initial state;

x0 ∈ X is the initial data value.
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X machines Testing

Definition

Φ is called identifiable if for all φ1, φ2 ∈ Φ, whenever there exists
x ∈ X such that φ1(x) = φ2(x), φ1 = φ2.

Definition
A sequence φ1, . . . , φn ∈ Φ∗, with φi ∈ Φ, 1 ≤ i ≤ n, is said to be
controllable if there exist x1, . . . xn ∈ X such that
φi(xi−1) = xi , 1 ≤ i ≤ n. A set P ⊆ Φ∗ is called controllable if for
every p ∈ P , p is controllable.
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X machines Testing

Let us assume we have an X-machine specification Z and an
implementation that behaves like an element Z ′ of a fault model. In
this case, the fault model will be a set of X-machines with the same
data set X , type Φ and initial data value x0 as the specification.

Idea - reduce checking that the IUT Z ′ conforms to the specification
Z to checking that the associated automaton of the IUT conforms to
the associated automaton of the X-machine specification.
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X machines Testing

Let t be a test transformation of Z and p = φ1 . . . φn, with
φ1, . . . , φn ∈ Φ.

Suppose p is controllable and let x1, . . . , xn ∈ X such that
φi(xi−1) = xi , 1 ≤ i ≤ n.

If p ∈ LAZ
, then t(p) = x0 . . . xn.

If p /∈ LAZ
, then t(p) = x0 . . . xk+1, where 0 ≤ k ≤ n − 1, is

such that φ1 . . . φk ∈ LAZ
and φ1 . . . φkφk+1 /∈ LAZ

.

If p is not controllable, then t(p) is not defined.

A conformance test suite for Z

Tk = t(SΦ[k + 1](W ∪ {λ}) ∩ Φ[l ] \ {λ}),

where S is a proper state cover of AZ , W is a strong characterisation
set of AZ and t is a test transformation of Z .
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Kernel P Systems

Definition (Kernel P systems)

A kP system of degree n is a tuple kΠ = (A, µ,C1, . . . ,Cn, i0), where

A is a finite set of elements called objects;

µ defines the membrane structure, which is a graph, (V ,E ),
where V is a set of vertices representing components
(compartments), and E is a set of edges, i. e., links between
components;

Ci = (ti ,wi ,0), 1 ≤ i ≤ n, is a compartment of the system
consisting of a compartment type, ti , from a set T and an initial
multiset, wi ,0 over A; the type ti = (Ri , ρi) consists of a set of
evolution rules, Ri , and an execution strategy, ρi ;

i0 is the output compartment where the result is obtained.
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Identifiable transitions in kP systems

Definition

Two rules r1 : x1 → y1{g1} and r2 : x2 → y2{g2} from R1, are said to
be identifiable if there is a configuration c where they are applicable
and if c =⇒r1 c ′ and c =⇒r2 c ′ then b(r1) = b(r2).

According to the above definition the rules r1 and r2 are identifiable
in c if when the result of applying them to c is the same then their
bodies, x1 → y1 and x2 → y2, are identical.
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Identifiable transitions in kP systems

Definition

The multisets of rules M ′,M ′′ ∈ R∗1 , are said to be identifiable, if
there is a configuration c where M ′ and M ′′ are applicable and if
c =⇒M′

c ′ and c =⇒M′′
c ′ then b(M ′) = b(M ′′).

A kP system kΠ has its rules identifiable if any two multisets of rules,
M ′,M ′′ ∈ R∗1 , are identifiable.

Example

Considering the rules r1 : a→ x{≥ a}, r2 : b → y{≥ b},
r3 : a→ y{≥ a}, r4 : b → x{≥ b}, and the configuration ab it is
clear that the multisets of rules M ′ = r1r2 and M ′′ = r3r4 are not
identifiable in the configuration c = ab, as c = ab =⇒M′

c ′ = xy and
c = ab =⇒M′′

c ′ = xy , but b(M ′) 6= b(M ′′).
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Kernel P Systems Testing

An automata model needs to be constructed first, based on the
computation tree of the kP system.

The computation tree may be infinite so an approximation of
the tree is used.

This approximation is obtained by limiting the length of any
computation to an upper bound k and considering only
computations up to k transitions in length.

This approximation is then used to construct a deterministic
finite cover automaton (DFCA) of the model
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Testing approach using an one-membrane kP system

the model - kΠ = (V ,T , µ1,w1,R1, 1).

X-machine - Z t = (Qt ,X ,Φ,H t , qt
0, x0) - corresponding to the

computation tree of kΠ.

considering only computations of maximum l steps, where l > 0
is a predefined integer.

R1 = {r1, . . . , rn} - the set of rules of kΠ.

As only finite computations are considered, for every rule ri ∈ R1

there will be some Ni such that, in any step, ri can be applied at
most Ni times, 1 ≤ i ≤ n.
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X-machine Z t = (Q t ,X ,Φ,H t , qt0, x0):

Qt is the set of nodes of the computation tree of maximum l
steps;

qt
0 is the root node;

X is the set of multisets with elements in V ;

x0 is the initial multiset w1;

Φ is the set of (partial) functions induced by the application of
multisets of rules r i11 . . . r

in
n , 0 ≤ i1 ≤ N1, . . . , 0 ≤ in ≤ Nn,

i1 + . . . in > 0;

H t is the next-state function determined by the computation
tree.

The set of (partial) functions, Φ, from the above definition is
identifiable if and only if the corresponding multisets of rules are
pairwise identifiable.
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Example

The model
kΠ1 = (V ,V , µ1, w1, R1, 1), one compartment kP system , where
V = {a, b, c}, w1 = ab, and

R1 =

{
r1 : a→ b{≥ a∧ ≥ b} r2 : ab → bc{≤ a∧ ≥ b}
r3 : c → b{≥ b∧ ≤ c100} r4 : c → cc{≤ c100}

}
Any two of the above multisets of rules are identifiable.
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Example cont.

Computation tree (considering that rules are applied in
the maximally parallel mode).

level 0 - w1 = ab

level 1 - ab =⇒r1 b2 and ab =⇒r2 bc .

level 2 - bc : bc =⇒r3 b2 and bc =⇒r4 bc2.

level 3 - bc2: bc2 =⇒r2
3 b3, bc2 =⇒r3r4 b2c2 and bc2 =⇒r2

4 bc4.

level 4 - b2c2 =⇒r2
3 b4, b2c2 =⇒r3r4 b3c2, b2c2 =⇒r2

4 b2c4,
bc4 =⇒r4

3 b5, bc4 =⇒r3
3 r4 b4c2, bc4 =⇒r2

3 r
2
4 b3c4,

bc4 =⇒r3r3
4 b2c6 and bc4 =⇒r4

4 bc8.
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Example cont.

Let the upper bound on the number of computation steps considered
be l = 4.
For this value of l , the rules r1 and r2 have been applied at most
once, so N1 = 1 and N2 = 1, whereas rules r3 and r4 have been
applied at most four times, so N3 = 4 and N4 = 4.
Therefore the type Φ of the X-machine Z t corresponding to the
computation tree is the set of partial functions induced by the
multisets r i11 r

i2
2 r

i3
3 r

i4
4 , 0 ≤ i1 ≤ 1, 0 ≤ i2 ≤ 2, 0 ≤ i3 ≤ 4, 0 ≤ i4 ≤ 4,

i1 + i2 + i3 + i4 > 0.
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Example cont.
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Figure: The associated automaton AZ t corresponding to the computation
tree for kΠ1 and l = 4
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DFCA construction

Let ≤ be a total order (based on the level from the tree) on Qt such
that q1 ≤ q2 whenever level(q1) ≤ level(q2) and denote q1 < q2 if
q1 ≤ q2 and q1 6= q2.
Define P t = {q ∈ Qt | ¬∃q′ ∈ Qt · q′ ∼ q, q′ < q} and
[q] = {q′ ∈ Qt | q′ ∼ q ∧ ¬∃q′′ ∈ P t · q′′ ∼ q′, q′′ < q} for every
q ∈ P t (i.e. [q] denotes the set of all states q′ for which q is the
minimum state similar to q′).

Theorem

Let Z = (Q,X ,Φ,H , q0, x0), where Q = {[q] | q ∈ P t}, q0 = [qt
0],

H([q], φ) = [H t(q, φ)] for all q ∈ P t and φ ∈ Φ. Then AZ is a
minimal deterministic finite cover automaton (DFCA) for LAZt .
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Example cont.

Consider Z t as in the previous example.

P t = {qt
0, q

t
1, q

t
2, q

t
4, q

t
7}; [qt

0] = {qt
0, q

t
8, q

t
9, q

t
10, q

t
11, q

t
12, q

t
13, q

t
14, q

t
15},

[qt
1] = {qt

1, q
t
3, q

t
5}, [qt

2] = {qt
2}, [qt

4] = {qt
4, q

t
6}, [qt

7] = {qt
7}. Then

Z = (Q,X ,Φ,H , q0, x0), where Q = {[qt
0], [qt

1], [qt
2], [qt

4], [qt
7]} and

q0 = [qt
0]. The associated automaton of Z is a minimal DFCA for

LAZt and is as represented in Figure 2.
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Example cont.
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Figure: The DFCA for LAZt
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Example cont.

Test generation process

λ, r1, r2, r2 r4, r2 r4 r 2
4 are the sequences of minimum length

that reach [qt
0], [qt

1], [qt
2], [qt

4] and [qt
7], respectively.

S = {r1, r2, r2 r4, r2 r4 r 2
4} is a proper state cover of Z .

r1 distinguishes [qt
0] from all remaining states and r3, r3r4 and r 4

3

hold the same property for [qt
2], [qt

4] and [qt
7], respectively =⇒

W = {r1, r3, r3r4, r 4
3} is a strong characterisation set of Z .

The test suite is given by the formula Tk = t(Yk), where
Yk = SΦ[k + 1](W ∪ {λ}) ∩ Φ[l ] \ {λ} and t is a test
transformation of Z .
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Conclusions and Future Work

Testing approach for kernel P systems that, under certain
conditions, ensures that the implementation conforms to the
specification.

The methodology is based on the identifiable kernel P systems
concept, which is essential for testing.

Has been introduced for one-compartment kP systems with
rewriting rules, but could be extended.

Future work: planning to show how more complex engineering
problems can be solved, tested and verified by using kP systems.
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Questions and Answers

Thank you!
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