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The power of water

Coromandel, New Zealand

The magical sound,
of the cascading water,
natural beauty
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Water Integrator

First model built in 1936, in
USSR; modular model in 1941,
standard unified units in
1949-1955

Used to solve inhomogeneous
differential equations with
applications such as: solving
construction issues in the sands
of Central Asia and in
permafrost and in studying the
temperature regime of the
Antarctic ice sheet

Only surpassed by digital
computers in the 1980’s.
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MONIAC (Monetary National Income Analogue Computer)

MONIAC (Monetary National
Income Analogue Computer)
also known as the Phillips
Hydraulic Computer and the
Financephalograph

First built in 1949 by New
Zealand economist Bill Phillips
to model the UK economy.

Built as a teaching aid it was
discovered that it was also an
effective economic simulator.
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Previous Work1

No centre of control.

Water flows if and only
if all valves on a pipe are
open.

Water flows between
tanks concurrently.

1Thomas Hinze et al. “Membrane computing with water”. In: J. Membr. Comput.
2.2 (2020), pp. 121–136.
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Open Problems

How can functions be stacked without a combinatorial explosion of
the number of valves?

How can termination of the system be detected?

How to reset the system?

Is the system Turing complete?

We solve these problems by introducing a set of control tanks.
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Control tanks

x1 x′
1

xn x′
n... ...

y1, ..., ym = f(x1, ..., xn)

y1 ym... y′
1

y′
m...

A control tank for each
input and output.

Start the computation
once all control tanks are
filled.

An output is ready when
it’s control tank is full.
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Subtraction

x x′ y′

z z′

y

q′ = 1

q′ = 1

y = 0

y 6= 0

q′ = 1 q′ = 1 q′ = 1

q′

x′ = 1

y′ = 1

x = 0

y = 0

x′ = 0

y′ = 0

z = x− y
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Primitive Recursion

To prove our system can construct all unary primitive recursive functions
we use the following base functions and closure operators2:

Successor function: S(x) = x + 1

Subtraction function: B(x , y) = x − y

Composition operator: C (h, g)(x) = h(g(x))

Difference operator: D(f , g)(x) = f (x)− g(x)

Primitive recursion operator: P(f )(0) = 0, P(x + 1) = f (P(x))

To assist in the proof we also construct two copy functions: inplace i(x)
and destructive c(x).

2Cristian Calude and Lila Sântean. “On a theorem of Günter Asser”. In:
Mathematical Logic Quarterly 36.2 (1990), pp. 143–147.
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Destructive copy x1 = x2 = x
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Inplace copy x1 = x

x x′
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Successor function S(x) = x + 1

x x′

q′ = 1

x′ = 1

x = 0

x′ = 0

q′ = 1

z = x+ 1 q′

z′z
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Composition operator C (h, g)(x) = h(g(x))

x x′

y = g(x)

y y′

z = f(y)

z z′
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Difference operator D(f , g)(x) = f (x)− g(x)

x1 x′
1

u = g(x)

u u′

z = B(u, v) = u− v

x x′

z z′

x2 x′
2

v = f(x)

v v′

c(x) : x1 = x2 = x
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Primitive recursion operator P(f )(0) = 0,
P(x + 1) = f (P(x))
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To prove Turing completeness we require that our system can construct
the unary primitive recursive functions as well as3:

Addition function: A(x , y) = x + y

µ operator: µy (f )(x , y) = miny{f (x , y) = 0}

3Julia Robinson. “General recursive functions”. In: Proceedings of the american
mathematical society 1.6 (1950), pp. 703–718.
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Addition function A(x , y) = x + y
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µ operator µy(f )(x , y) = miny{f (x , y) = 0}
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A restricted cP system

cP systems subcells act as data storage the same as our water tanks.

cP systems have a set of rules for changing the content in the
subcells. Similarly we have a set of valves and pipes.

cP systems are able to create and consume subcells whereas in our
system we cannot create and consume tanks.

Using the similarities we are able to construct cP system-like rules
which don’t contain creating or consuming of subcells.
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Rules for subtraction

x x′ y′

z z′

y

q′ = 1

q′ = 1

y = 0

y 6= 0

q′ = 1 q′ = 1 q′ = 1

q′

x′ = 1

y′ = 1

x = 0

y = 0

x′ = 0

y′ = 0

z = x− y

s1 q() → s2 q(1) | cx (1) cy (1) (1)
s2 cx (1) → s2 cx () | q(1) (2)
s2 cy (1) → s2 cy () | q(1) (3)
s2 vx (X1) → s2 vx (X ) | q(1) vy ( 1) (4)
s2 vy (Y 1) → s2 vy (Y ) | q(1) (5)

s2 vx (X1) vz (Z) → s2 vx (X ) vz (Z1) | q(1) vy () (6)
s2 q(1) cz () → s3 q() cz (1) | cx () cy () (7)
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Conclusion

We have proven that our water tank system is Turing complete, via
construction of µ-recursive functions.

We have demonstrated how termination can be detected, as well as
how to combine different functions without an exponential explosion
of the number of valves.

We have given a brief description on how our water tank system is a
restricted version of cP systems.
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Future Work

Being able to run a function without all of the controls being filled.

Solving practical problems with the system.

Using the system to model biological systems.

Constructing a programmable universal water computer.
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Questions

Coromandel New Zealand

Thank you for listening.

Any questions?
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